

Assessment of skin sensitizing potential of UV-filters by a novel *in vitro* method based on DPRA

Carolina G. Benevenuto, Thaís Y. T. Fuzinaga, Clarissa Azevedo, Lauro N. Silva Junior, Rafael S. S. Yokoo, Julia P. Piccoli, Eduardo M. Cilli, Eduardo F. Vicente, <u>Lorena R. Gaspar</u>

School of Pharmaceutical Sciences of Ribeirão Preto University of São Paulo

School of Science and Engineering/ Chemistry Institute Sao Paulo State University

Raw materials

Most related to Allergic Contact Dermatitis

• Higher risks:

Nickel

Fragrances

Preservatives

Hair dyes

UV-filters

https://www.medindia.net/news/healthwatc h/allergic-contact-dermatitis-induced-bycosmetics-86059-1.htm

UV-filters

Sunscreens

Skin sensitization Long time potential in the skin Used in many formulations (Scheman, 2000)

Mechanisms associated with skin sensitisation

Adverse Outcome Pathway (AOP) and Alternative methods validated (key events):

- 1) Covalent binding of electrophilic substances to nucleophilic centres in skin proteins. (DPRA 442C)
- 2) Keratinocytes: inflammatory responses and changes in gene expression associated with specific cell signalling pathways - (ARE)-dependent pathways. (442D: KeratinoSens, LuSens)
- Activation of dendritic cells (DC): expression of specific cell surface markers, chemokines and cytokines. (442E: h-CLAT, U-SENS™, IL-8 Luc assay)
- 4) T-cell activation and proliferation: murine Local Lymph Node Assay (LLNA 442B)

Limitations: lipid soluble compounds

DPRA - proteic haptenization in vitro

Objective

Present a modified DPRA test, which uses synthetic peptide analogues containing hydrophobic amino acids, which are able to react with electrophilic and more lipophilic chemical allergens (haptens).

Methods

Cysteine based heptapeptides modifications

	Proposal
Original peptide (CIS)	original peptide containing Cysteine
Modification 1 (peptide FVC)	Replacement of Ala by Val to enhance peptide lipid solubility
Modification 2 (peptide WAC)	Replacement of Phe (F) by Trp (W) to allow detection at 280 nm
Modification 3	Replacement of Ala by Val to enhance peptide lipid solubility and Phe (F) by Trp (W) to allow detection
Modification 4 (peptide YAC)	Replacement of Phe (F) by Tyr (Y) to allow detection at 280 nm
Modification 5 (peptide YVC)	Replacement of Ala by Val to enhance peptide lipid solubility and Phe (F) by Tyr (Y) to allow detection at 280 nm

Lysine based heptapeptides modifications

	Proposal
Original peptide (LIS)	original peptide containing Lysine
Modification 1 (peptide FVK)	Replacement of Ala by Val to enhance peptide lipid solubility
Modification 2 (peptide WAK)	Replacement of Phe (F) by Trp (W) to allow detection at 280 nm
Modification 3 (peptide WVK)	Replacement of Ala by Val to enhance peptide lipid solubility and Phe (F) by Trp (W) to allow detection at 280 nm
Modification 4 (peptide YAK)	Replacement of Phe (F) by Tyr (Y) to allow detection at 280 nm
Modification 5 (peptide YVK)	Replacement of Ala by Val to enhance peptide lipid solubility and Phe (F) by Tyr (Y) to allow detection at 280 nm

METHODS

Solid phase peptide synthesis (SPPS)

- Purification: HPLC
- Degree of purity > 95%
- Characterization: Mass spectrometry

Cyclic step-wise construction of a peptide chain attached to an insoluble polymeric support

- Fmoc is the α -amino protecting group
- Carboxyl group of each incoming amino acid is activated by coupling reagents and couples with the α-amino group of the preceding amino acid.
- Fmoc is removed with 4methylpiperidine and side-chain protectors by TFA
- The peptide chain is extended by repetition of the synthesis cycle.

METHODS

METHODS

Reaction and analysis

24h

Centrifugation 40 min with 400 xg; Hermle Z383K. (only for CYS)

HPLC (Shimadzu) MP: isocratic elution: 50% phase A (0.1% TFA in water) and 50% phase B (0.085% TFA in acetonitrile)

Detection at UV (220 and 280 nm) C18 column (Agilent® C18, 100 mm, 5µm); flow: 0.35 mL /min.

CYS + Chemicals (peptide peak area) CYS (referecence control)

Predictive model based on cysteine and lysine depletion (OECD, 2015).

Mean of CYS and LYS depletion (%)	Reactivity Class	Prediction
$0\% \le$ CYS/LYS Depletion $\le 6.38\%$	None or minimal reactivity	Negative
$6.38\% < CYS/LYS$ Depletion $\leq 22.62\%$	Low reactivity	
$22.62\% < CYS/LYS$ Depletion $\leq 42.47\%$	Moderate reactivity	Positive
$42.47\% < CYS/LYS$ Depletion $\leq 100\%$	High reactivity	

Predictive model based only on cysteine depletion

Cysteine depletion (CYS) (%)	Reactivity Class	Prediction
$0\% \le \%$ CYS Depletion $\le 13.89\%$	None or minimal reactivity	Negative
$13.89\% \le CYS$ Depletion $\le 23.09\%$	Low reactivity	
$23.09\% \le CYS$ Depletion $\le 98.24\%$	Moderate reactivity	Positive
$98.24\% \le CYS$ Depletion $\le 100\%$	High reactivity	

(Gerberick et al., 2004, 2007, OECD TG 442C)

METHODS

Results and discussion

Screening - Depletion assay with Cysteine based heptapeptides

	Test chemicals (positive controls and UV filters)	Analysis in 220 nm	Analysis in 280 nm	Proficiency substances (range of % cysteine peptide depletion) (OECD TG 422C)
	DNCB	99.9 <u>+</u> 0.0	-	90-100
	CINA	63.1 <u>+</u> 3.5	-	60.8-100
CYS	AVO	1.9 <u>+</u> 3.3	-	-
(FAC)	BP-3	7.9 <u>+</u> 8.1	-	-
	OC	10.5 <u>+</u> 9.1	-	
	DNCB	100 <u>+</u> 0.0		90-100
XAO		0.5 <u>+</u> 0.9		00.0.400
YAC	CINA	44.5.2 <u>+</u> 15.1		60.8-100
	AVO	20.1 <u>+</u> 21.8		-
	BP-3	15.2 <u>+</u> 12.6		-
	OC	18.7 <u>+</u> 21.2		-
	DNCB	77.6 + 3.8		90-100
VVC	CINA	18.9 <u>+</u> 2.0		60.8.100
TVC	CINA	5.7 <u>+</u> 6.8		60.8-100
	AVO	0.0 <u>+</u> 0.0		-
	BP-3	0.0 <u>+</u> 0.0		-
	OC	0.0 + 0.0		-

RESULTS

Screening - Depletion assay with Lysine based heptapeptides

	Test chemicals (positive controls and UV filters)	Analysis in 220 nm	Analysis in 280 nm	Proficiency substances (range of % lysine peptide depletion) (OECD TG 422C)		
	DNCB	20.6 <u>+</u> 2.7		15 – 45%		
LYS	CINA	63.9 <u>+</u> 1.2		40.2 - 69.0%		
(FAK)	AVO	0.0 <u>+</u> 0.0		-		
	BP-3	1.6 <u>+</u> 1.5		-		
	OC	0.0 <u>+</u> 0.0		-		
	DNCB	13.8 + 5.8	15.2 + 6.7	15 – 45%		
	CINIA	56.4 <u>+</u> 4.0	93.6 <u>+</u> 11.1	40.0 00.0%		
WV K	CINA	61.9 <u>+</u> 1.1	79.5 <u>+</u> 3.7	40.2 - 69.0%		
	AVO	20.4 <u>+</u> 15.0	38.8 <u>+</u> 20.1	-		
	BP-3	0.0 <u>+</u> 0.0	0.0 <u>+</u> 0.0	-		
	OC	21.7 <u>+</u> 3.3	41.3 <u>+</u> 4.6	-		
	DNCB	49.7 <u>+</u> 2.6		15 – 45%		
Υνκ	CINIA	0 <u>+</u> 0		40.2 60.0%		
	CINA	51.7 <u>+</u> 6.4		40.2 - 69.0%		
	AVO	0.0 <u>+</u> 0.0		-		
	BP-3	0.0 <u>+</u> 0.0		-		
	OC	0.0 <u>+</u> 0.0		-		
	DNCB	37.2 <u>+</u> 32.2		15 – 45%		
EVIK	CINIA	69.0 <u>+</u> 3.7		40.2 60.0%		
F V IN	CINA	43.2 <u>+</u> 37.4		40.2 - 09.0%		
	AVO	18.2 + 14.7		-		
	BP-3	0.0 <u>+</u> 0.0		-		
	OC	10.0 + 17.3		-		
	DNCB	40.6 <u>+</u> 1.8		15 – 45%		
	CINIA	43.7 <u>+</u> 34.3		40.2 60.0%		
	CINA	20.2 <u>+</u> 34.9		40.2 - 69.0%		
	AVO	0.0 <u>+</u> 0.0		-		

Proficiency of FVK analysis – equivalence to original DPRA

	FVK						
Substances	Mean	SD	Proficiency substances - range of % lysine peptide depletion (OECD TG 442C)				
2,4-Dinitrochlorobenzene	25.3	5.8	15-45				
Oxazolone	29.3	3.2	10-55				
Formaldehyde	5.72	5.0	0-24				
Benzylideneacetone	0.0	0.0	0-7				
2.3-Butanedione	0.0	6.76	10-45				
1-Butanol	3.0	3.5	0-5.5				
Lactic Acid	3.4	3.0	0-5.5				
4-Methoxyacetophenone	3.5	6.1	0-5.5				
6-Methylcoumarin	0.0	0.0	0-5.5				

USP prediction models based on CYS and FVK or only in FVK depletion (OECD TG 442C)

Mean of CYS and FVK depletion (%)	Reactivity Class	Prediction
0% ≤ CYS/FVK or only FVK depletion ≤ 6.38%	None or minimal reactivity	Negative
6.38% < CYS/FVK or only FVK depletion ≤ 22.62%	Low reactivity	
22.62% < CYS/FVK or only FVK depletion ≤ 42.47%	Moderate reactivity	Positive
42.47% < CYS/FVK or only FVK depletion ≤ 100%	High reactivity	

substance	CYS Depletion	LYS Depletion	FVK Depletion	CYS and LYS mean	CYS and FVK mean	Reactivity based on CYS LYS mean	Reactivity based on CYS	Reactivity based on CYS FVK mean	Reactivity based on FVK	DPRA prediction model	USP prediction model
DNCB	99.9±0.0	20.6±2.7		60.3		High	High			+/+	
CINA	63.1±3.5	63.9±1.2		63.5		High	Moderate			+/+	
AVO	1.9±3.3	0.0±0.0		0.9		None or minimal	None or minimal			-/-	
BP-3	7.9±8.1	1.6±1.5		4.7		None or minimal	None or minimal			-/-	
OC	10.5±9.1	0.0±0.0		5.2		None or minimal	None or minimal			-/-	
DHHB	8.2±3.1	0.0±0.0		4.1		None or minimal	None or minimal			-/-	
OCTZ	5.3±5.8	_*		-		-	None or minimal			-	
омс	6.9 <u>+</u> 6.7	2.0 <u>+</u> 2.0		4.5		None or minimal	None or minimal			-/-	
DNCB	99.9±0.0		37.2±32.2		68.55			High	Moderate		+/+
CINA	63.1±3.5		69.0±3.7 43.2±37.4		66.05 53.15			High High	High High		+/+ +/+
AVO	1.9±3.3		16.4±5.9		9.15			Low	Low		+/+
BP-3	7.9±8.1		0.0±0.0		3.95			None or minimal	None or minimal		-/-
ос	10.5±9.1		29.5±2.4		20.00			Low	Moderate		+/+
DHHB	8.2±3.1		6.1±5.6		7.15			Low	None or minimal		+/-
остz	5.3±5.8		0.0±0.0		2.65			None or minimal	None or minimal		-/-
омс	6.9±6.7		8.2±5.9		7.55			Low	Low		+/+

UV filters

α, β-unsaturated carbonyl group:electrophile

o-alkyl resorcinol precursor Electrophile Michael addition

1,3-diketone, Electrophile Michael addition

 H_3C

AVO

emergent photoallergen and potential contact allergic reactions BP-3

photodermatitis and contact allergic

contact and photo-allergic reactions both of which may lead to contact dermatitis

H₃C

Photopatch studies

A 20-year analysis of previous and emerging allergens that elicit photoallergic contact dermatitis

Frank C. Victor, MD, David E. Cohen, MD, MPH, and Nicholas A. Soter, MD New York, New York

Table IV. Summary of photopatch test studies

Location	n	Study period	Most frequent allergens
Scandinavia ⁵	1993	1980-1985	Musk ambrette, PABA, promethazine, chlorpromazine
United States ⁶ (Minnesota)	70	1980-1985	Chlorpromazine, musk ambrette, promethazine
United Kingdom ⁷	2715	1983-1998	Sunscreens, chlorpromazine, promethazine, musk ambrette
United States ⁴ (New York)	187	1985-1990	S <mark>unscreens</mark> , antimicrobial agents, fragrances
Austria, Germany, Switzerland ⁸	1129	1985-1990	Tiaprofenic acid, Fentichlor, carprofen,
			4-isopropyl-dibenzoylmethane
United States ³ (New York)	138	1986-1993	Sunscreens, fragrances, antimicrobials agents
Netherlands ⁹	44	1989-1994	Chlorpromazine, promethazine, musk ambrette
Austria, Germany, Switzerland ¹⁰	1261	1991-1997	Fentichlor, carprofen, chlorpromazine,
			2-hydroxy-4-methoxybenzophenone
Australia ¹¹	81	1991-1999	Oxybenzone, benzophenone-4
France ¹²	2067	1991-2001	Sesquiterpene lactone, ketoprofen,
			b <u>enzophenone,</u> dib <u>enzoylmethan</u> e
India ¹³	50	1994-1999	Musk ambrette, chlorpromazine, promethazine, balsam of Peru
Netherlands ⁹	55	1995-1999	Eusolex 8020, Parsol 1789, benzophenone-3
United Kingdom and Europe ¹⁴	1155	2000-2002	Benzophenone-3
United States ¹⁵	182	2000-2005	Medications <u>, sunscreens, fr</u> agrances, antiseptics
Italy ¹⁶	1082	2004-2006	Ketoprofen, piroxicam, promethazine, octocrylene

Conclusions

- UV-filters presented positive results for the cutaneous sensitization potential, especially for avobenzone and octocrylene, which are described in the literature as low sensitizers.
- The proposed model presents different results compared to the DPRA model, since the UV-filters became more soluble and could interact better with peptide analogues

TE

Peptídeos: Síntese, Otimização e Estudos Aplicados