

Alternative Toxicity Testing: North American Agriculture Industry

Angela Hofstra August 24, 2018

Classification: PUBLIC

Protecting Human Health

- Predictive; efficient; accepted
- Where we are
- Where are headed
- Where we need help

Where we are now

Home → Health Canada → About Health Canada → Branches and Agencies

Pest Management Regulatory Agency

The Health Canada Pest Management Regulatory Agency (PMRA) is responsible for pesticide regulation in Canada. Created in 1995, this branch of Health Canada consolidates the resources and responsibilities for pest management regulation.

Pesticides are stringently regulated in Canada to ensure they pose minimal risk to human health and the environment. Under authority of the Pest Control Products Act, Health Canada:

Office of Chemical Safety and Pollution Prevention (OCSPP)

202-564-2902

About the Office of Chemical Safety and Pollution Prevention OCSPP Organization Chart

- Federal Insecticide, Fungicide, and Rodenticide Act (FIFRA)
- Federal Food, Drug and Cosmetic Act (FFDCA)
- Toxic Substances Control Act (TSCA)
- Pollution Prevention Act, and
- · portions of other statutes (see below).

The Office of Chemical Safety and Pollution Prevention includes:

- Office of Pesticide Programs
- Office of Pollution Prevention and Toxics
- Office of Science Coordination and Policy

Process for Establishing & Implementing Alternative Approaches to Traditional in Vivo Acute Toxicity Studies

EPA's Office of Pesticide Programs (OPP) has developed a strategic vision for implementing the 2007 NRC report on Toxicity Testing in the 21st Century. This strategic vision has multiple components involving a combination of computational and predictive modeling approaches, *in vitro* techniques, and limited, targeted *in vivo* testing, to supplement or replace the existing toxicity tests required in 40 CFR part 158 in support of pesticide registration.

<section-header><section-header><section-header><section-header><section-header><section-header><section-header>

Science Policy Note

Health

SPN2017-03

Acute Dermal Toxicity Study Waiver

US Environmental Protection Agency Office of Pesticide Programs

Guidance for Waiving Acute Dermal Toxicity Tests for Pesticide Formulations & Supporting Retrospective Analysis

November 9, 2016

Health

Canada

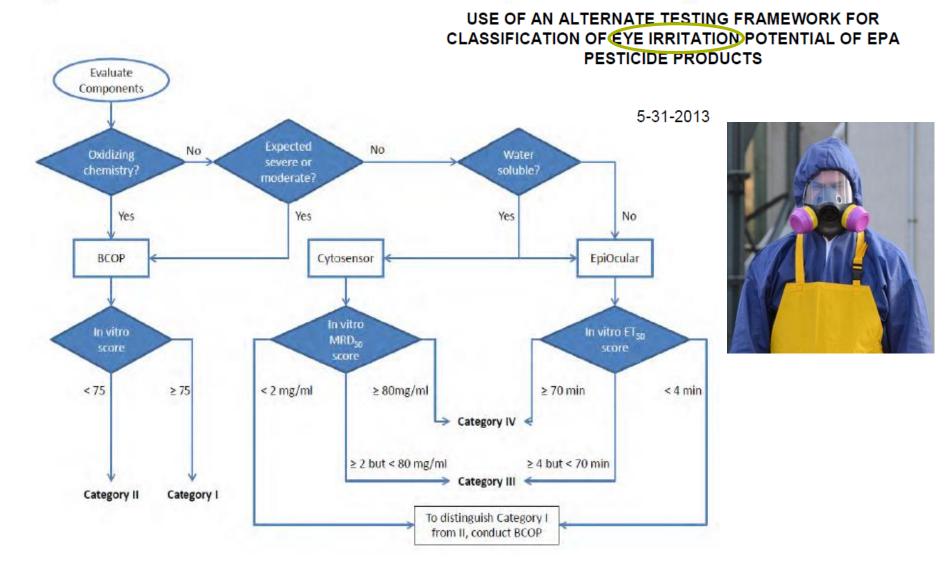
Santé

Canada

Votre santé et votre sécurité... notre priorité.

Guidance for Waiving or Bridging of Mammalian Acute Toxicity Tests for Pesticides

Pest Management Regulatory Agency Health Evaluation Directorate


Office of Pesticide Programs

Guidance for Waiving or Bridging of Mammalian Acute Toxicity Tests for Pesticides and Pesticide Products (Acute Oral, Acute Dermal, Acute Inhalation, Primary Eye, Primary Dermal, and Dermal Sensitization)

March 1, 2012

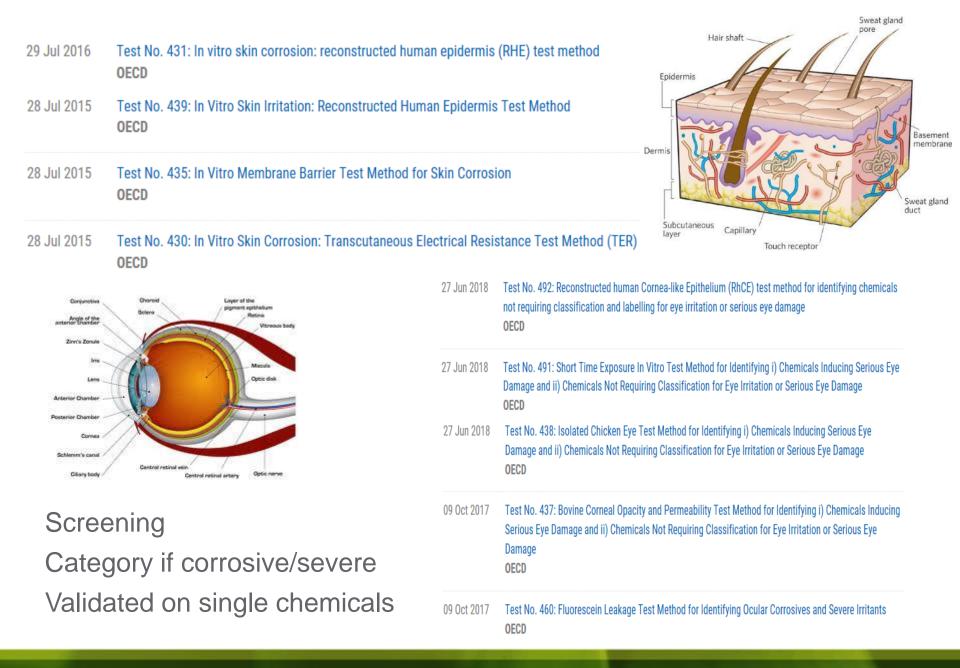


Figure1. Decision Tree: Selection and Evaluation of Assays for Hazard Labeling

8

9

Figure 2a. Schematic of the AOP "2 out of 3" defined approach. OECD TG methods for Key Events (KE) 1-3 are run in an undefined order until at least two of the three methods show consensus.

US EPA proposal for skin sensitization

- Performance based
- Single chemical validation
- Mixed results?

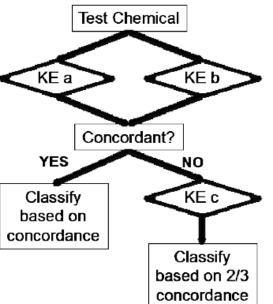
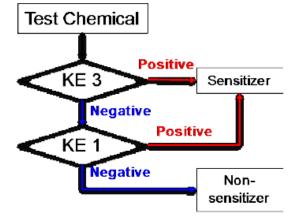
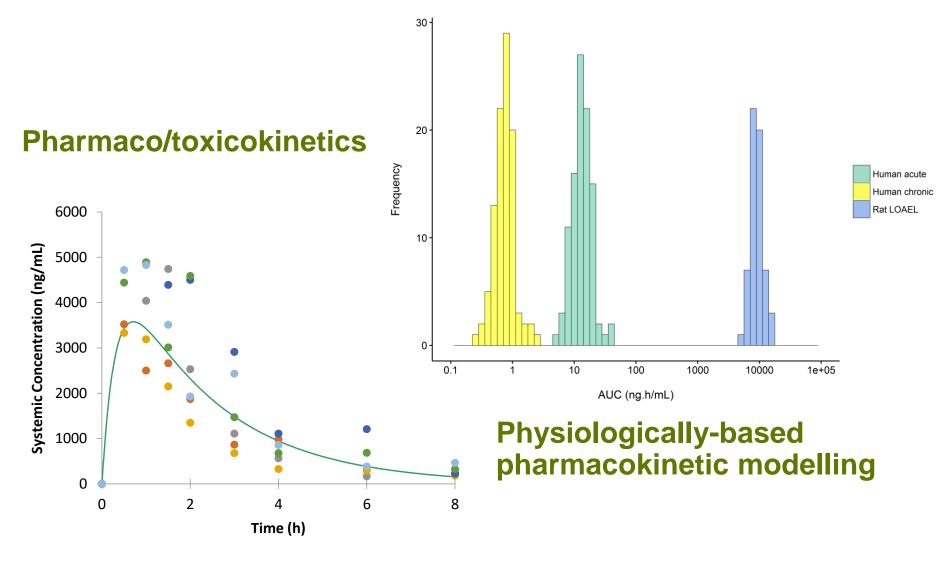



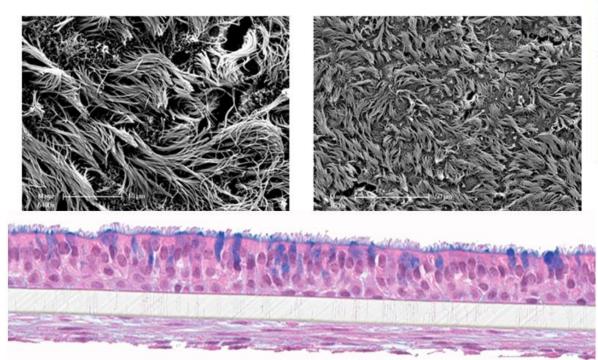
Figure 2b. Schematic of the Key Event (KE) 3/1 Sequential Testing Strategy (STS) defined approach

Beyond Acute Toxicity



Waivers Considered by EPA's Office of Pesticide Programs (12/11-2/17)										
Type of Study	Total # of Waiver Requests	Animals/study	Cost of study (USD)	Waivers Granted	Total animals saved	\$ savings (USD)	% accepted			
Inhalation	288	96	350K	222	21,312	77.7M	77			
Neurotoxicity	186	80	250K	163.5	13,080	40.9M	88			
Dermal	57	80	310K	50	4,000	15.5M	88			
Developmental	48	1700		39	66,300		81			
DNT	18	880		15	13,200		83			
Subchronic Dog	14	32		11	352		79			
Reproductive	38	880		32	28,100		84			
Immunotoxicity	223	40	70K	207	8,280	14.5M	93			
Chronic/ Carcinogenicity	28	480		24	11,520		86			
Subchronic Rat	12	80		10	800		83			
total	912			774	166,944		85			

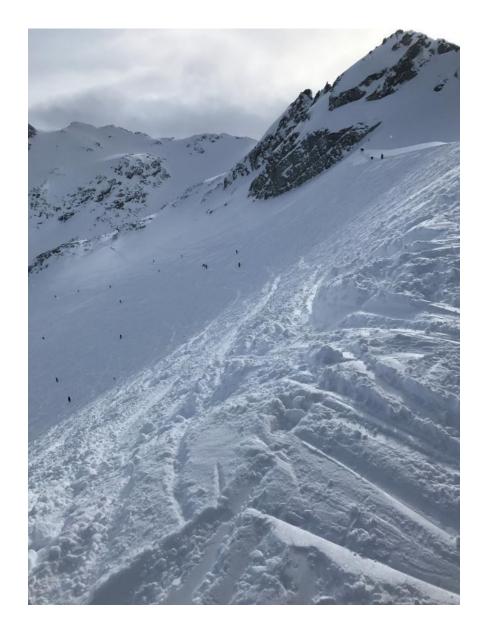
PMRA removed 1-year dog requirement March 2016


Maximizing use of existing data

In vitro inhalation toxicity assessment

MucilAir[™] – 3D *in vitro* cell model of human upper airway epithelium prepared from differentiated primary human cells from a single healthy donor.

Graphics from http://www.epithelix.com/


Revised: FIFRA Scientific Advisory Panel Meeting on "Evaluation of a Proposed Approach to Refine the Inhalation Risk Assessment for Point of Contact Toxicity: A Case Study Using a New Approach Methodology (NAM)." Request for Nominations and Notice of Public Meeting

EPA is seeking nominations for expert ad hoc members of the FIFRA Scientific Advisory Panel to evaluate a proposed approach to refine an inhalation risk assessment for point of contact toxicity. Panel members will review a case study using the pesticide chlorothalonil to evaluate a new approach methodology (NAM). The panel will meet on December 4-7, 2018.

Docket ID: EPA-HQ-OPP-2018-0517

Where are we headed

Multistakeholder in vitro inhalation initiative

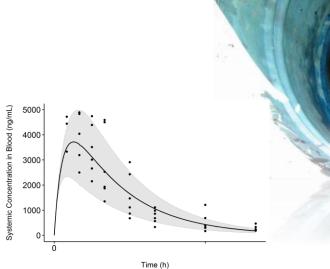
• <u>https://ice.ntp.niehs.nih.gov/#!Mixtures</u>

	Natio	onal Toxicology Program artment of Health and Human Services				Calendar & Events New Q Search the NTP Website	
tegrated emical vironment Home Integrator	Formulations	Workflows Reference Data Abo	out ~ Help ~				
Run Search Clear Select Assays		Selected Assay Categories: Acute Inhalation Toxicity			-	ctive ingredients = 764 (unique: 249)). Showing 3 I	
Acute Dermal Toxicity	*	Formulation ID	Active Ingredient	CASRN	Percent AI	Acute Inhalation Toxicity curatedEPAToxCat	
Acute Oral Toxicity	*	Abamectin B1b	T	TCE_4677373915		NA	
Acute Inhalation Toxicity	*	Abamectin 915 Abamectin (92.8%)		ICE_1791765921		1	
Primary Skin Irritation	*	Absolute 500 SC Fungicide		ICE_41066972582		3	
Primary Eye Irritation	1	Acephate		ICE_42079364361		4	
Dermal Sensitization	-	Acephate 90 DF Insecticide		ICE_2113214488		4	
Demai Sensiuzation	1	Acequinocyl		ICE_588976947		3	
Select Reference Lists.		Acetochlor		ICE_41652406964		4	
Enter one CASRN per line.		Acrobat 50WP Fungicide		ICE_1963069246		4	
		Acticide CBM		ICE_4615347920		3	
		Acticide LA 2605-F		ICE_41842760555		2	
		Acticide MKW1		ICE_41895609418		4	
		Acticide PM Industrial Mildewicide		ICE_1709332886		2	
		Adage Premier		ICE_870154992		4	
		Advantage Plus 20 for Dogs		ICE 412455843		4	
		Albaugh Glyphosphate Acid		ICE_1757011315		4	
		Albaugh Trifluralin 10G		ICE_41122997002		4	
		Allectus SC Insecticide		ICE_41093789115		4	
		Aloft LC G Insecticide		ICE_4337369718		4	
		Aloft LC SC Insecticide		ICE_1577187151		3	
		► Ametryn		ICE_4889033908		4	
		Amicarbazone Herbicide		ICE_41835701855		4	
		Aminopyralid		ICE_998364049		4	
		 Amitraz(98%) 		ICE_4791572937		4	
		Amore DF		ICE_4879871432		4	
				ICE_1253614018		4	
		Amtide Tebuconazole 45 WDG Fungicide					

2016 workshop co-organized by the PETA International Science Consortium and NICEATM

WORKING GROUP 1 Establish a database of existing acute inhalation toxicity data WORKING GROUP 2 Optimize (Q)SAR models

WORKING GROUP 3 Prepare a review on mechanisms of acute inhalation toxicity, dosimetry considerations, & available non-animal methods

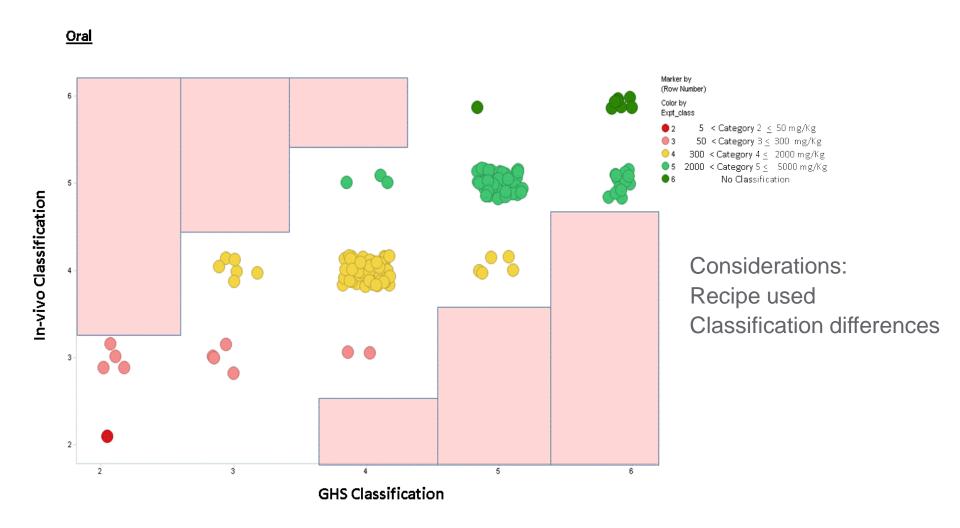

WORKING GROUP 4 Design a non-animal testing approach and conduct a proof-of-concept study

Clippinger, Allen, et al. Toxicol In Vitro. 2018;52:131-145 Clippinger, Allen, et al. Toxicol In Vitro. 2018;48:53-70 www.piscltd.org.uk/inhalation Integrated Chemical Environment: https://ice.ntp.niehs.nih.gov/

Utilize existing data

- Complex mixtures
- Modelling
- Bridging:
 - Retrospective -
 - Establish equivalence -
 - Consistent submission & review

Process to assess existing data


PROCESS FOR EVALUATING & IMPLEMENTING ALTERNATIVE APPROACHES TO TRADITIONAL *IN VIVO* ACUTE TOXICITY STUDIES FOR FIFRA REGULATORY USE 2/4/2016

Once a proposed alternative method(s) is accepted as a suitable candidate, the evaluation process would consist of a number of steps. First, existing data generated using the alternative method(s) will be collated and organized (for example in a spreadsheet or database). The data could be previously generated or generated explicitly for the purpose of informing an evaluation of regulatory applicability. This data compilation could be accomplished in various ways. For example, a coalition of interested companies could work with a neutral party to collect and aggregate data so that aggregate results could be reported without disclosure of confidential business information (CBI), or data could be compiled from the open scientific literature.

Acute toxicity estimate (ATE): Acute oral

ATE: Acute inhalation

Multistakeholder in vitro eye irritation initiative

• 29 active ingredients, 232 formulations, 6 intermediates

Current in vivo - in vitro paired data									
BCOP	Epiocular	ICE	NRR	CAMVA					
132	172	91	68	4					

- No clear outcome
- Prospective study
- Exploring in silico

Multistakeholder in vitro skin irritation initiative

- Accurate categorization
- Revised OECD TG 439
- AMCP & agricultural products
 - Comparison new in vitro data with retrospective in vivo results

Regulator	Categories									
EPA	IV Non to Mild	I Corrosive								
PMRA	Non to Slightly	Mildly	Moderately	Severely	Corrosive					
GHS	Not classifiedMildIrritatingCorrosive (1				1A,1B,1C)					

In vitro dermal absorption

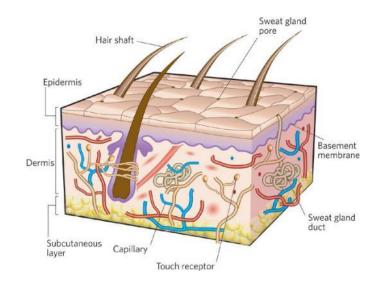
- Part of a "triple pack"
- Retrospective
 - PMRA: fate of skin bound residue
 - EPA: decision comparison

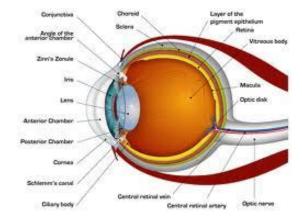
Where we need help

Data needs

TABLE 1 URINARY EXCRETION AFTER INTRAVENOUS ADMINISTRATION®

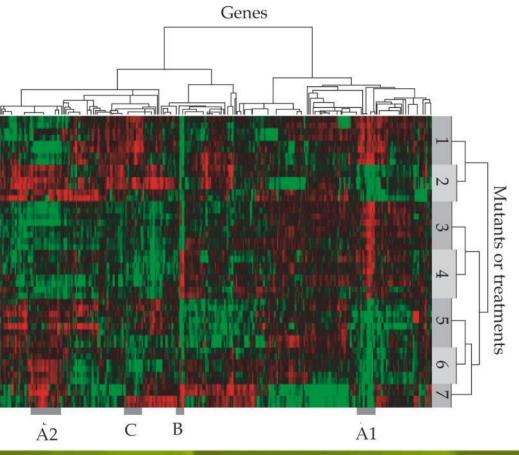
		Excretion rate ($\frac{v}{0}$ dose/hr) (time period in hr)								Total excretion	
Compound	0-4	4-8	8-12	12-24	24-48	48-72	7296	96-120	% Dose	SD	Half-life (hr)
Azodrin	1.816	2.721	1.701	1.000	0.679	0.341	0.173	0.088	67.7	5.3	20
Ethion	0.832	1.041	1.892	0.791	0.316	0.123	0.071	0.065	38.4	3.6	14
Guthion	1.513	1.204	1.590	1.041	0.813	0.458	0.257	0.127	69.5	6.9	30
Malathion	12.949	5.571	2.420	0.368	0.052	0.017	0.008	0.004	90.2	9.7	3
Parathion	0.035	1.321	2.508	1.124	0.469	0.135	0.059	0.037	45.8	5.3	8
Baygon	10.361	7.290	1.478	0.192	0.064	0.053	0.047	0.043	83.8	7.2	8
Carbaryl	0.459	0.394	0.211	0.102	0.037	0.021	0.011	0.008	7.4	2.2	9
Aldrin	0.224	0.091	0.113	0.040	0.023	0.013	0.011	0.008	3.6	0.9	6
Dieldrin	0.038	0.067	0.074	0.046	0.046	0.013	0.015	0.008	3.3	1.0	28
Lindane	0.688	0.611	0.552	0.244	0.232	0.132	0.125	0.102	24.6	6.1	26
2,4-D	3.001	4.003	5.312	1.728	0.737	0.275	0.153	0.097	100.0	2.5	13
Diquat	9.328	1.544	1.825	0.292	0.127	0.059	0.054	0.045	61.2	16.0	4


* Mean values of urinary recovery of ¹⁴C for 5 days after single iv administration. There were 6 subjects for each compound.



Eye & Skin Irritation

- Persistence or reversibility
 - Mimic a real eye
- Distinguish between:
 - Corrosive < Irritating < Non-Irritating
- When a negative is a negative?

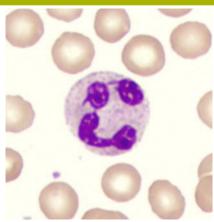


Skin Sensitisation

- Complex mixture validation
- Correlation of AOP to human risk of sensitization
- Genomics approaches
 - Proprietary databases

Consistent regulation & assessment

	Category 1	Category 2	Category 3	Category 4						
Oral LD ₅₀ mg/kg										
EPA	≤ 50	>50 to 500	> 500 to 5000	> 5000						
PMRA	< 500	500 to 1000	1000 to 2000	> 2000						
GHS ^{1,2}	≤ 5	5 to 50	50 to 300	300 to 2000						
Inhalation LC50 mg/L										
EPA	≤ 0.05	> 0.05 to 0.5	>0.5 to 2	> 2						
PMRA	< 0.05	0.05 to 0.5	0.5 to 2.0	> 2						
GHS ¹	≤ 0.05	> 0.05 to 0.5	0.5 to 1	1 to 5						


¹Version 5

²Category 5: 2000 to 5000 mg/kg

The reason why new concepts in any branch of science are hard to grasp is always the same; contemporary scientists try to picture the concept in terms of ideas which existed before.

Freeman Dyson 1958

Predictive Efficient Accepted

