

A new definition for animal-free testing. Replacing animalderived components in regulatory *in vitro* methods.

Dr Carol Treasure Founder and CEO, XCellR8 Ltd, UK carol.treasure@x-cellr8.com

Pan American Conference on Alternative Methods Rio de Janeiro, 23rd August 2018

- Founded 2008 by Dr Carol Treasure and Bushra Sim
- UK-based CRO exclusively devoted to animal-free testing

Why?

Improve human safety without making compromises on animal welfare

What is truly animal-free testing?

- Fetal bovine serum
- Tissue extracts
- Antibodies
- Reasons: largely historical
- Scientific and ethical considerations
- Truly animal-free testing needs to be animal-product-free
- Driven by consumer and industry demand for sustainable, ethical products and ethical testing

Most *in vitro* methods utilise animal components: Ectal boving corum

Everything we do at XCellR8 is animal-product-free ("vegan testing") - GLP

Animal-Product-Free In Vitro Testing: Key Human Health Endpoints

- Skin Irritation (OECD TG 439): reconstructed skin model: **OK**
- Skin Corrosion (OECD TG 431): reconstructed skin model: **OK**
- Skin Corrosion: (OECD TG 435): Corrositex™: OK
- Eye Irritation (OECD TG 492): reconstructed corneal model: **OK**

Animal-Product-Free In Vitro Testing: Key Human Health Endpoints

- Skin Sensitisation:
 - DPRA (OECD TG 442c): **OK**
 - KeratinoSens[™] (OECD TG 442d): animal components
 - h-CLAT (OECD TG 442e): animal components
- Genotoxicity:
 - Ames Test (OECD TG 471): animal components
 - Micronucleus Test (OECD TG 487): animal components
 - Chromosome Aberration Test (OECD TG 473): animal components
- Acute toxicity: no in vitro test (LD50 related methods still in use)

Skin Sensitisation Adverse Outcome Pathway (AOP)

Key Events In Skin Sensitisation and Related Tests

- 1. Contact (Direct Peptide Reactivity Assay – **DPRA**)
- Release of Pro-Inflammatory Cytokines by Keratinocytes (KeratinoSens[™])
- Dendritic Cell Activation/Maturation (human Cell Line Activation Test – h-CLAT)
- 4. Migration
- 5. T-cell Proliferation N (Local Lymph Node Assay - LLNA)

Regulatory guidance: "2 out of 3" approach

Adaptation of the KeratinoSens[™] Skin Sensitisation Test (OECD TG 442d) to Animal-Product-Free Conditions

Published in ALTEX:

Belot, N., Sim, B., Longmore, CL., Roscoe, L. and Treasure, C. (2017). Adaptation of the KeratinoSens[™] skin sensitisation test to animal-product-free cell culture. ALTEX. http://www.altex.ch/current-issue/adaptation-of-the-keratinosens-skin-sensitization-test-toanimal-product-free-cell-culture

KeratinoSens[™] - Method Outline

- Human keratinocyte cell line (HaCaT) transfected with a luciferase reporter linked to Nrf2-mediated activation of Antioxidant Response Element (ARE)-linked genes.
- 12 concentrations of test chemical incubated for 48 hours (in triplicate; 3 independent runs)
- Luciferase response measured by luminescence and cytotoxicity measured by MTT

Animal-Product-Free (APF) Adaptation of KeratinoSens™

- Animal-derived components were replaced with human-derived & recombinant equivalents:
 - FBS replaced with pooled human serum (60-70 donors) obtained from FDA-approved source / Sigma Aldrich – cells adapted to new culture conditions
 - Porcine trypsin replaced with recombinant Trypzean™
- In-house validation using the panel of proficiency chemicals and performance standards for OECD TG 442d.

KeratinoSens[™] - Sample Results

Key parameters measured: EC1.5 (concentration to achieve 1.5-fold induction); Imax (maximum fold induction)

Results: Non-Sensitisers (as per LLNA)

Chemical Name	Validat	ed Referenc	e Method (VRM)	XCellR8 Animal-Product-Free Adaptation		
	I _{Max}	EC1.5 (μΜ)	Prediction	I _{Max}	EC1.5 (μΜ)	Prediction
Isopropanol	1.2	n.i.	Non-Sensitiser	1.2	n.i.	Non-Sensitiser
Salicylic Acid	1.1	n.i.	Non-Sensitiser	1.4	n.i.	Non-Sensitiser
Lactic Acid	1.3	n.i.	Non-Sensitiser	1.3	n.i.	Non-Sensitiser
Glycerol	1.2	n.i.	Non-Sensitiser	1.4	n.i.	Non-Sensitiser
4-methoxy-acetophenone	1.7	449.3	Sensitiser	2.1	620	Sensitiser
Chlorobenzene	1.2	n.i.	Non-Sensitiser	1.2	n.i.	Non-Sensitiser
Methyl Salicylate	1.2	n.i.	Non-Sensitiser	1.2	n.i.	Non-Sensitiser
Sulfanilamide	1.4	n.i.	Non-Sensitiser	1.1	n.i.	Non-Sensitiser

Results: Sensitisers (as per LLNA)

Chemical Name	Validated Reference Method (VRM)			XCellR8 Animal-Product-Free			
				Adaptation			
	I _{Max}	EC1.5	Prediction	I _{Max}	EC1.5	Prediction	
		(µM)			(µM)		
Cinnamyl alcohol	1.7	123.6	Sensitiser	4.2	20	Sensitiser	
Ethylene Glycol	188	57.4	Sensitiser	4.8	29	Sensitiser	
Dimethacrylate							
Phenyl Benzoate	1.3	n.i.	Non-Sensitiser	1.1	n.i.	Non-Sensitiser	
Eugenol	1.3	n.i.	Non-Sensitiser	2.2	286	Non-Sensitiser	
						(borderline)	
2-Mercaptobenzothiazole	8.8	48.1	Sensitiser	6.9	57	Sensitiser	
Citral	96.4	23.2	Sensitiser	3.8	18	Sensitiser	
Isoeugenol	6.4	16.1	Sensitiser	3.4	20	Sensitiser	
Methyldibromo	4	7.8	Sensitiser	2.7	8	Sensitiser	
Glutaronitrile							
4-Methylaminophenol	5.9	9.4	Sensitiser	36.1	4	Sensitiser	
Sulfate							
Para-phenylene Diamine	26.8	5	Sensitiser	28.2	6	Sensitiser	
2,4-Dinitrochlorobenzene	14.8	2.5	Sensitiser	8.5	1	Sensitiser	
4-Nitrobenzyl Bromide	6.9	1.3	Sensitiser	10.5	<0.98	Sensitiser	
Oxazolone	2.4	175.5	Sensitiser	5.4	129	Sensitiser	
n.i. = not induced							

Animal-Product-Free (APF) Adaptation of KeratinoSensTM - Conclusions / Outcomes

- All 20 reference chemicals correctly classified in line with Validated Reference Method (VRM)
- Data accepted by the OECD Expert Working Group on Skin Sensitisation and WNT National Co-Ordinators' Committee
- Adapted method published as an Annex to the VRM in the new version of OECD TG 442d 2018
- Therefore full acceptance as a regulatory method

Adaptation of the human Cell Line Activation Test (h-CLAT) (OECD TG 442e) to Animal-Product-Free Conditions

Published in ALTEX:

Edwards et al (2018). Adaptation of the human Cell Line activation Test (h-CLAT) to Animal-Product-Free Conditions: https://www.altex.org/publib/Edwards_of_180613_v2.pdf

h-CLAT - Method Outline

- Measures changes in 2 dendritic cell surface markers (CD54 and CD86) upregulated by skin sensitisers
- THP-1 cells (human monocytic cell line)

- Dose-finding assay to define CV75 (dose required to reduce cell viability to 75% of negative control values)
- Cells exposed to 8 concentrations of test chemical in at least 2 independent experiments
- Cells centrifuged, washed and treated with blocking buffer followed by FITCconjugated antibodies for CD54 and CD86
- Analysis of Relative Fluorescence Intensity by flow cytometry. h-CLAT classifies sensitisation potential according to the crossing of a specific relative fluorescence intensity (RFI) threshold for each cell surface marker (RFI ≥ 200 for CD54; RFI ≥ 150 for CD86)

Animal-Product-Free Adaptation of h-CLAT

- Animal-derived components were replaced with human-derived & recombinant equivalents:
 - Fetal bovine serum (FBS) replaced with pooled human serum (60-70 donors) obtained from FDA-approved source / Sigma Aldrich – cells adapted to new culture conditions. <u>Validation</u> <u>performed in 3 independent batches</u>
 - Bovine serum albumin (BSA) replaced with human serum albumin (HSA)
 - Animal-derived anti-CD54 and anti-CD86 antibodies replaced with non-animal antibodies using phage display (Human Combinatorial Antibody Library: HuCAL) – optimised using <u>reactivity check</u> chemicals as defined in TG 442e (DNCB, Nickel Sulfate and Lactic Acid)

Animal-Product-Free Adaptation of h-CLAT

 In-house validation using the panel of proficiency chemicals and performance standards for OECD TG 442e, using 3 independent serum batches.

Results Part 1: CV75 Values

Proficiency Substance	TG 442E	XCellR8
	CV75 Value Reference	Average CV75 Value
	Range (µg/ml)	(µg/ml)
2,4-Dinitrochlorobenzene	2-12	3.2
4-Phenylenediamine	5-95	32.6
Nickel sulphate	30-500	44.4
2-Mercaptobenzothiazole	30-400	276.4
R(+)-Limonene	>20	>500
Imidazolidinyl urea	25-100	14.2*
Isopropanol	>5000	>5000
Glycerol	>5000	>5000
Lactic acid	1500-5000	1546.4
4-Aminobenzoic acid	>1000	>1000

CV75 values (dose yielding 75% cell viability, µg/ml) derived from 2 independent experiments compared against the reference range from OECD TG 442E. *Out of range. However TG 442e requires range to be met for 8 out of 10 substances

Results Part 2: CD54 and CD86 Regulation by Proficiency Substrates (Non-Sensitisers)

Proficiency Substance	XCellR8 EC200	XCellR8 EC150	VRM EC200 range	VRM EC150 range	Meets VRM Range?
Isopropanol	Neg (>5000)	Neg (>5000)	Neg (>5000)	Neg (>5000)	Yes
Glycerol	Neg (>5000)	Neg (>5000)	Neg (>5000)	Neg (>5000)	Yes
Lactic acid	Neg (>1856)	Neg (>1856)	Neg (>5000)	Neg (>5000)	No*
4-Aminobenzoic acid	Neg (>600)	Neg (>600)	Neg (>1000)	Neg (>1000)	<i>No**</i>

EC200 (CD54) and EC150 (CD86) values (Effective Concentration, µg/ml, at which the sensitisation threshold is crossed – at RFI values of 200 and 150 respectively) for each proficiency substance. Data shown are EC values derived from 2 independent concordant experiments.

*Due to the experimental CV75 derived (1546.4 μ g/ml) the highest dose tested for Lactic Acid was 1856 μ g/ml. **Due to solubility limitations the highest dose tested for 4-Aminobenzoic acid was 600 μ g/ml.

Results Part 2: CD54 and CD86 Regulation by Proficiency Substrates (Sensitisers)

Proficiency Substance	XCellR8 EC200		XCellR8 EC150		VRM EC200 range	VRM EC150 range	Meets VRM Range?
2,4-dinitrochlorobenzene	1	5	1	4	0.5-15	0.5-10	Yes
4-Phenylenediamine	13	Neg	11	12	Neg or >1.5	<40	Yes
Nickel sulphate	48	45	40	44	10-100	<100	Yes
2-Mercaptobenzothiazole	103	89	63	93	10-140	Neg or >10	Yes
R(+)-Limonene	77	78	Neg	41	<250	Neg or >5	Yes
Imidazolidinyl urea	36	39	35	40	20-75	20-90	Yes

EC200 (CD54) and EC150 (CD86) values (Effective Concentration, µg/ml, at which the sensitisation threshold is crossed – at RFI values of 200 and 150 respectively) for each proficiency substance. Data shown are EC values derived from 2 independent concordant experiments.

Animal-Product-Free Adaptation of h-CLAT – Conclusions / Outcomes

- All proficiency chemicals correctly classified – equivalence with Validated Reference Method (VRM).
- Comparable values obtained for CV75, EC200 (CD54) and EC150 (CD86) (see previous notes)
- Data reviewed favourably by the OECD's WNT National Co-Ordinators' Committee and adaptation to TG442e will be discussed by Expert Working Group in 2018.
- Data may be used in REACH submissions supported by in-house validation results.

Further Work

- OECD discussions about animal-derived components in other methods and the use of human reagents
- Chemically defined conditions? To consider:
 - APF solutions driven by urgent need of key European cosmetic companies
 - Human derived components enabled a rapid solution to their key concerns
 - Human serum is from 60-70 pooled donors and good reproducibility observed between lots: for regulatory work, is this more representative than a chemically defined system?

eBook:

Getting under the skin of *in vitro* skin sensitisation testing

Available at: https://x-cellr8.com/in-vitro-skinsensitisation-testing/ Topics include potency assessment & testing finished products

Thanks to the XCellR8 team!

Thank you!

Dr Carol Treasure

carol.treasure@x-cellr8.com

www.x-cellr8.com

