

INMETRO activities in Alternative Methods

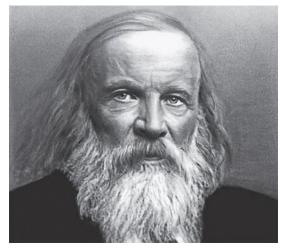
José Mauro Granjeiro

Senior Researcher – Bioengineering Group
Associate Professor – Dental School / Fluminense Federal University
jmgranjeiro@inmetro.gov.br

Mission

MEASUREMENTS AND PRODUCTS

PROMOTING HARMONIZATION IN CONSUMPTION RELATIONS, INOVATION AND COMPETITIVENESS


through:

METROLOGY and CONFORMITY ASSESSMENT

Metrology is about measurement

D.I. Mendeleyev
Institute for Metrology
(VNIIM)

Lord Kelvin

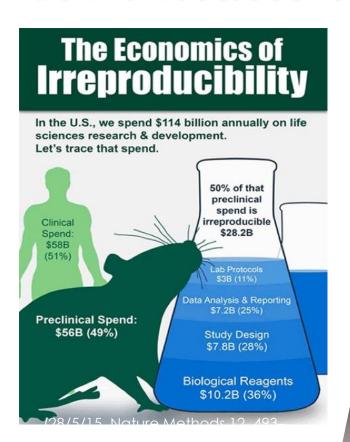
Standardization is fundamental

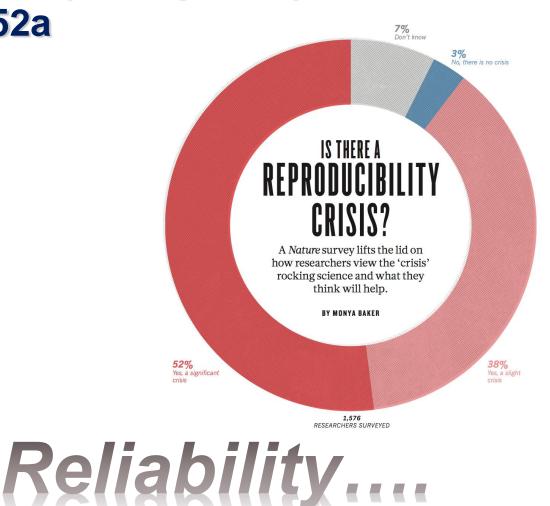
Famous Russian pioneer of metrology in chemistry:
Science starts from the measurement
(Dmitry Ivanovich Mendeleev)

Antibody Fc - Fc Receptor Complex Showing Glycosylation

Size

Time

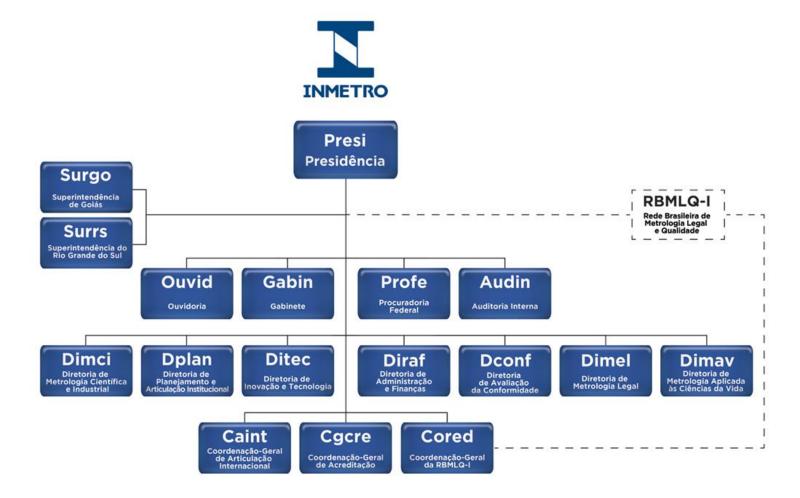

Weigh


Measurement - Protein structure, function, activity, interaction

Ludger

Nature 533, 452-454 (26 May 2016)

doi:10.1038/533452a



Is there a reproducibility crisis? Requirements

- Standardization
 - SOP Standard Operational Procedures
- Calibration
- Traceability
- Interlaboratory comparisons

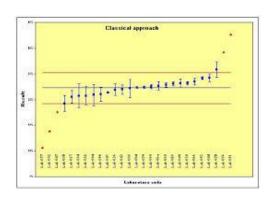
IIII IIII

97 Jan 1

Inmetro and Renama

(Science, Technology and Innovation Ministry Act 491/2012)

Central Labs:



Associated Labs: 2012 = 27

- Implementation and dissemination of validated alternative methods
- OECD series on principles of good laboratory practice and compliance monitoring

RENAMA_41 LABORATÓRIOS 3 CENTRAIS

38 ASSOCIADOS

- I BAHIA
- **J** GOIAS
- **PERNAMBUCO**
- SANTA CATARINA
- **2 MINAS GERAIS**
- 5 PARANÁ
- 10 RIO DE JANEIRO
- 19 SÃO PAULO

Fonte: Vanessa Rocha

Inmetro Activities in AM

- Central laboratory in RENAMA
 - Dissemination of OECD guidelines
 - Training on OECD guidelines (Luciene Ballotin)
 - Interlaboratory comparisons training and competence assessment
 - Research on cell quality and purity (CNPq/2016)
 - Production of cells master banks (CNPQ/2016)
 - Training and interlab comparisons in cell purity
 - Harmonized SOPs......

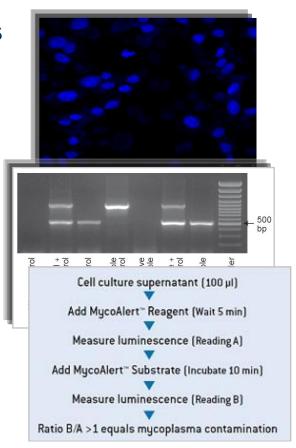
Inmetro Activities in AM

- Masterbanks (1 batch = 10 criotubes; free of mycoplasm and authentic human cells):
 - A549 4 batches
 - HEPG2 2 batches
 - MDCK2 3 batches
 - V79-4 1 batch
 - BALB3T3 A31 Clone 2 batches
 - SIRC do labio (in development).

Inmetro Activities in AM

- Scientific research in tissue engineering aiming (see posters 18, 54, 94, 99, 102, 103, 121, 128):
 - Regenerative medicine
 - In vitro tissue models for tox test
- Models:
 - Cartilage
 - Bone

Lung


Bioprinting + 3D scaffolds

PAN-AMERICAN

Interlaboratorial Comparisons - Reproducibility Quality of cell lines

- a) Authenticity assay STR for human cell lines
- b) Environmental monitoring *
 (the lab, surfaces, incubators
 and hoods are tested)

- c) Microbiological testing (bacteria and fungi) ** (all cells and solutions are tested)
- d) Mycoplasma testing (all cells and solutions are tested)
- Bioluminescence (biochemical assay) ***
- PCR ****

Interlaboratoriy Comparisons (see poster 54) The Principles of Good Laboratory Practices (OECD)

Assay Protocol (TG OECD)

Inmetro/General Coordination for Accreditation (GCA) and GLP

GCA as the Brazilian Compliance Monitoring Authority for the Principles of Good Laboratory Practices (Nov 26th 2007)

in May 2011, Brazil, through GCA, obtained the full adherence to the OECD acts related to the system of mutual acceptance of GLP data (MAD) including the products "pesticides, their components and related products" and "industrial chemical products".

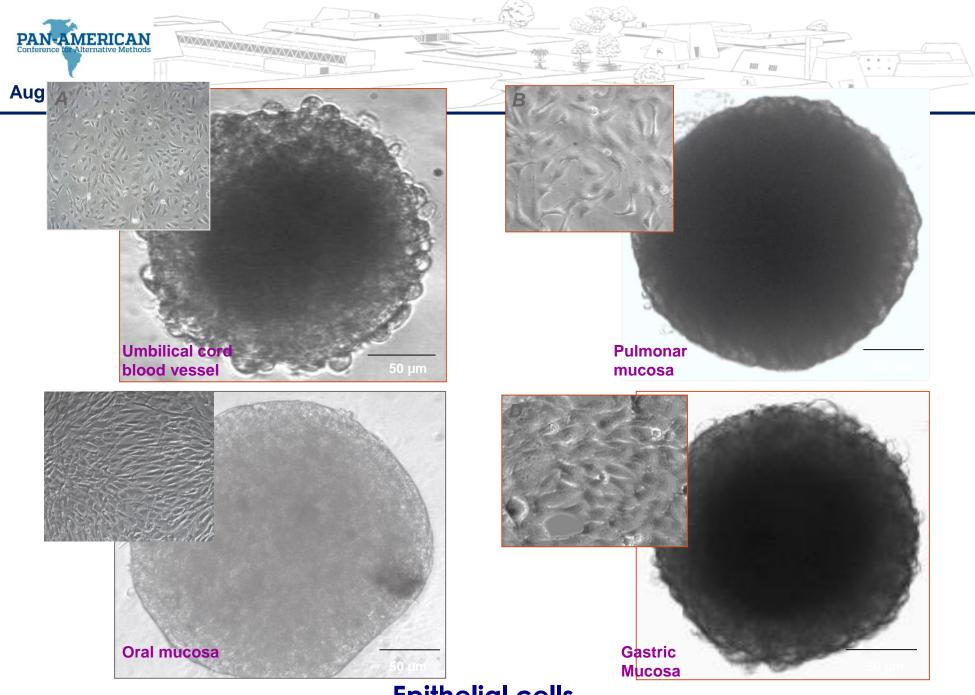
OECD TG + GLP Facility = acceptance by OECD member and non-member countries

PAN-AMERICAN

Activities 2016-2017

- Technical Training (NR18 Concea/ Cell quality)
- GLP Workshop
- Test method implementation (NR18 Concea/Cell quality)
- Increase network integration

Research at Inmetro on Alternative Methods


PAN-AMERICAN

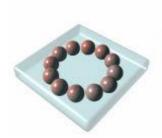
Engineering spheroids to mimic human tissues

- Human
 - Blood vessels

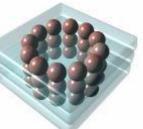
- Gastric mucosa
- Respiratory mucosa
- Oral mucosa
- Intestinal mucosa
- Osteoblasts
- Cartilage

Epithelial cells

Bioprinting


Original Article

The fusion of tissue spheroids attached to pre-stretched electrospun polyurethane scaffolds

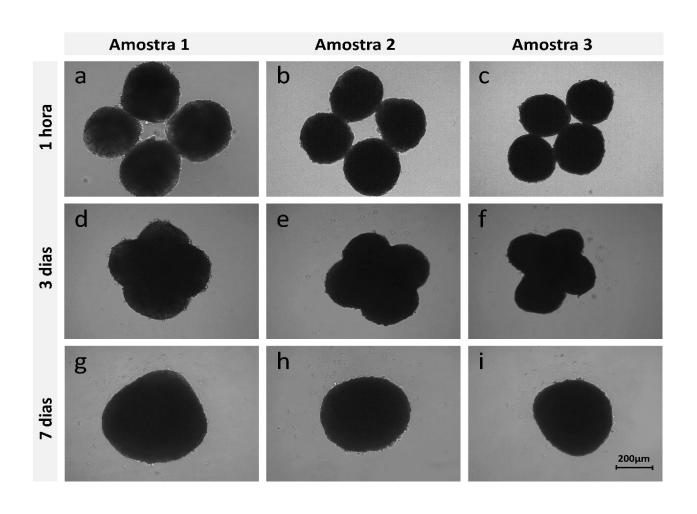

Journal of Tissue Engineering Volume 5: I-II © The Author(s) 2014 DOI: 10.1177/2041731414556561 tej.sagepub.com

\$SAGE

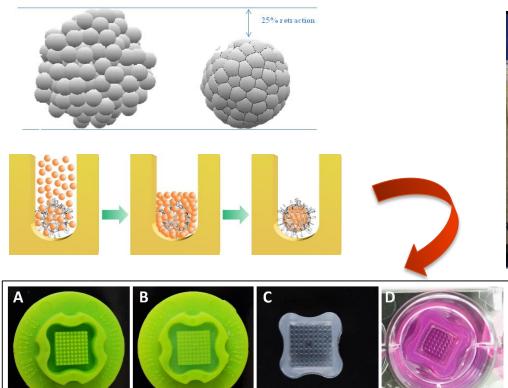
Vince Beachley¹, Vladimir Kasyanov², Agnes Nagy-Mehesz³, Russell Norris³, Iveta Ozolanta², Martins Kalejs^{2,4}, Peteris Stradins^{2,4}, Leandra Baptista⁵, Karina da Silva⁵, Jose Grainjero⁵, Xuejun Wen⁶ and Vladimir Mironov^{3,7}

[A]
Bioink spheroids
printed into layer
of biopaper gel

[B] Additional layers printed to build object


[C]
Bioink spheroids
fuse together and
biopaper dissolves

[D] Final living tissue



Spheroids fusion assay

General Objective

Just before 3D ... Growth factors

- Human growth factors
 - Platelet-rich plasma
 - BMP's

- Cell source and characterization
 - Human discarded tissues
 - Adult cells
 - Mesenchymal stem cells
 - Induced Pluripotent Stem Cells IPS

Amable et al. Stem Cell Research & Therapy 2013, 4:67 http://stemcellres.com/content/4/3/67

RESEARCH Open Access

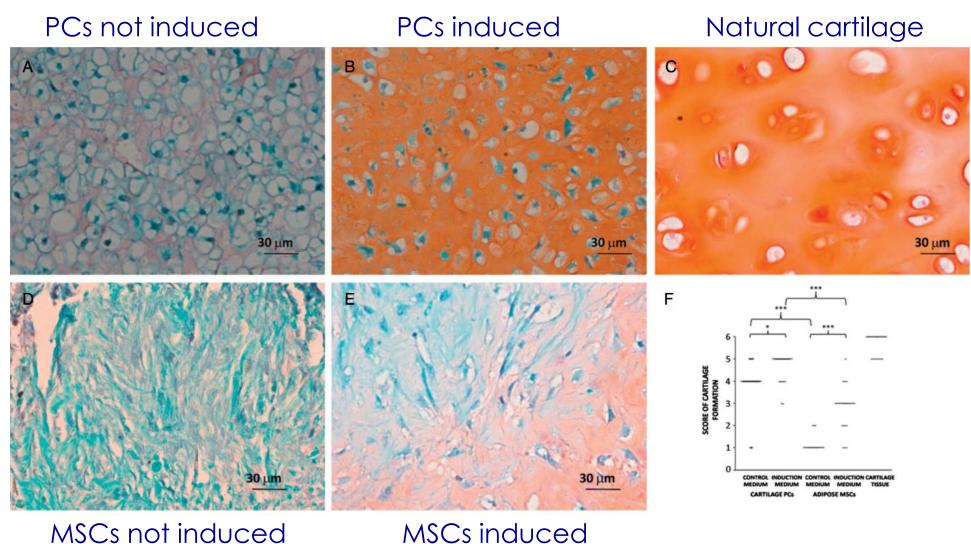
Platelet-rich plasma preparation for regenerative medicine: optimization and quantification of cytokines and growth factors

Paola Romina Amable^{1*}, Rosana Bizon Vieira Carias¹, Marcus Vinicius Telles Teixeira¹, Ítalo da Cruz Pacheco¹, Ronaldo José Farias Corrêa do Amaral², José Mauro Granjeiro³ and Radovan Borojevic¹

August, 23-24 2018

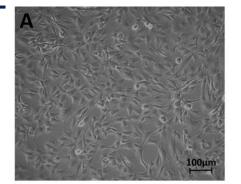
Bioengineered Cartilage in a Scaffold-Free Method by Human Cartilage-Derived Progenitor Cells: A Comparison With Human Adipose-Derived Mesenchymal Stromal Cells

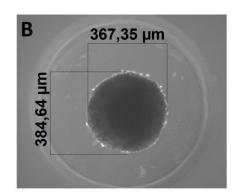
*†Leandra S. Baptista, †‡Karina R. Silva, †§Carolina S.G. Pedrosa, §Ronaldo J.F.C. Amaral, †João Vitor Belizário, ‡§Radovan Borojevic, and †José Mauro Granjeiro

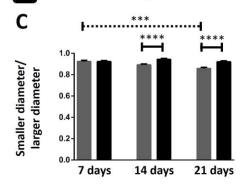

TABLE 1. Scoring for the evaluation of Safranin O-Fast Green-stained cartilaginous pellet culture sections based on Safranin O staining and cell morphology (minimum score = 0; maximum score = 6)

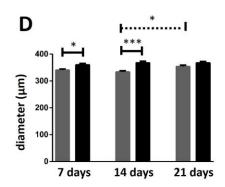
Intensity* of Safranin O stain	Score	Cell morphology	Score
No staining (blue)	0	Condensed/necrotic/pyknotic bodies	0
Weak staining (rose)	1	Spindle/fibrous	1
Moderate staining (orange)	2	Mixed spindle/fibrous with a rounded periphery	2
Dark staining (dark orange)	3	Majority with a rounded periphery	3

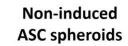
^{*} Sections 5 µm thick.



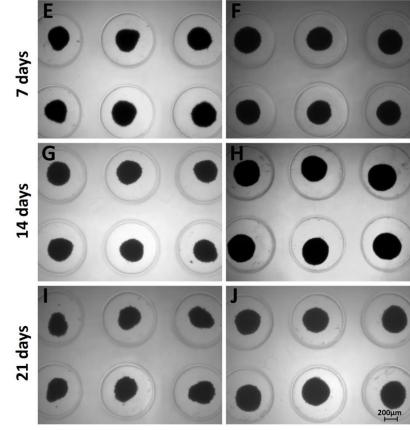

Representative Safranin O images (after 21 days)

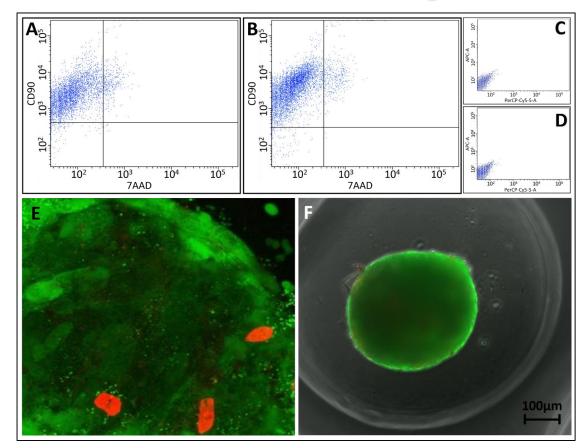

Αι

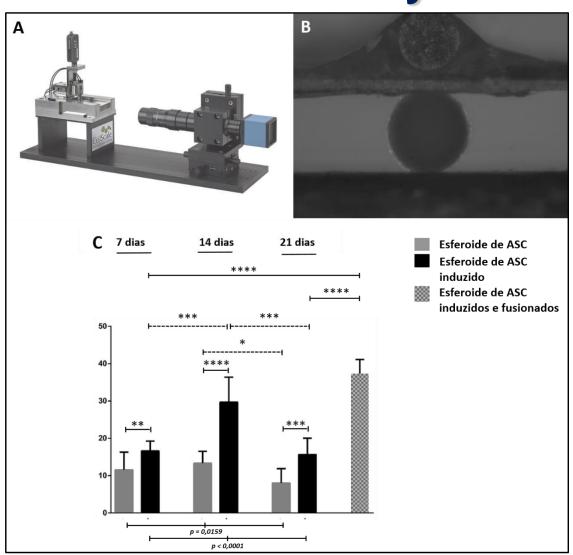




को ।


- Non-induced ASC spheroids
- **Induced ASC spheroids**


Induced ASC spheroids

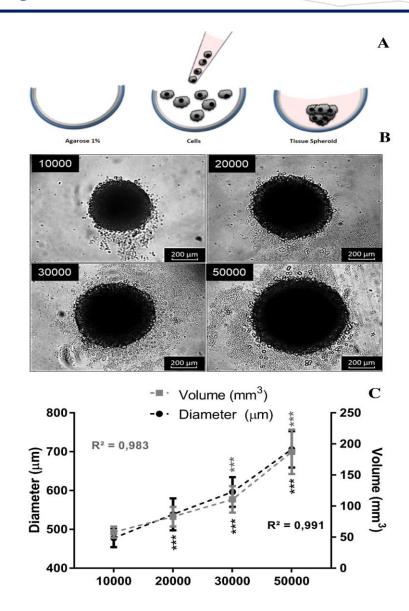

PAN-AMERICAN

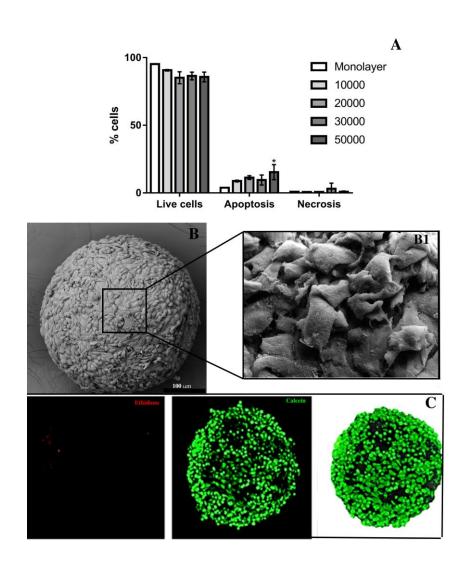
Cell viability – flow cytometry / immunocitochemistry

Calcein (green) Etidium homodimer (red)

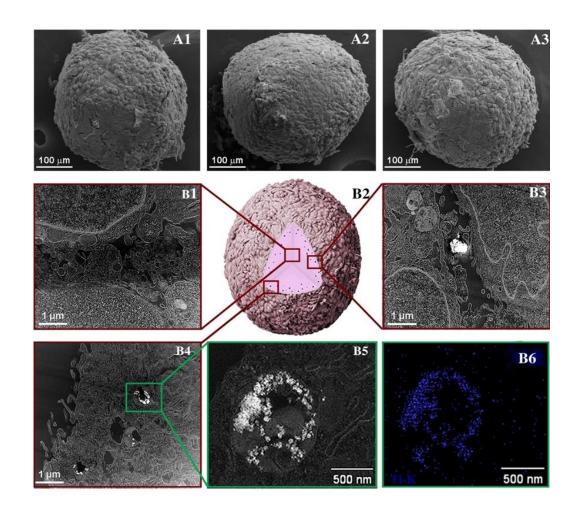
Mechanical analysis

The two faces of titanium dioxide nanoparticles bio-camouflage in 3D bone spheroids¶


W. Souza^{1,2,3}, S. G. Piperni^{3,4}, P. Laviola^{1,3,5}, A.L. Rossi⁴, Maria Isabel D. Rossi⁶, <u>Bráulio</u>


S. Archanjo⁷, P.E. Leite^{1,2,8}, R. Borojevic^{1,3,9}, L. A. Rocha^{3,10}, J.M. Granjeiro^{1,2,3,11}A. R.

Ribeiro^{1,2,3,5}


August, 23-24 2018

Exposition do TiO2

Figure 5: Spheroid organization and NPs internalization: (A1) SEM micrograph of spheroids without and with (A1) 5. 10 (A2) and (A3) 100 µg/ml TiO₂ NPs exposure during 72 hours. (B1) Scanning TEM (STEM) micrograph of the interior of spheroids with 100 µg/ml TiO₂ NPs. **(B2)** Schematic illustration of the penetration behavior of TiO₂ NPs, (B3) STEM micrograph of the outer layers of the spheroid showing NPs in the space between cells (arrow), (B4) and in membrane-vesicle (arrowhead), (B5) high magnification of the membrane vesicle, (B6) STEM/EDS map of Ti-K X-ray line confirming the presence of NPs. Image are representative of four independent analysis.

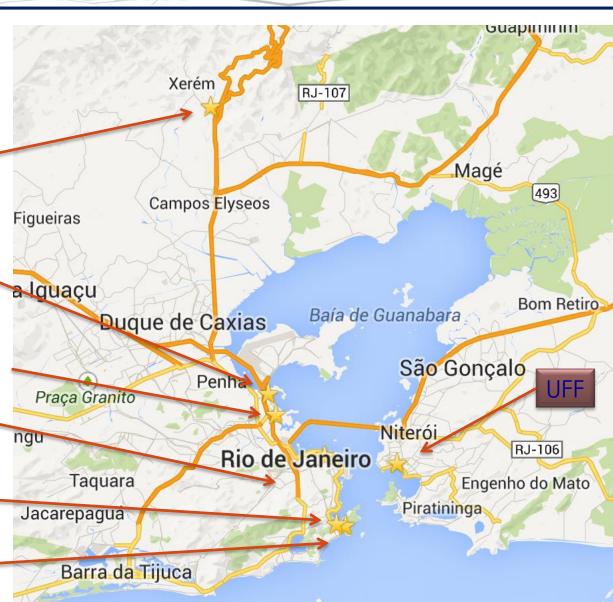
August, 23-24 2018

Team

UNICAMP, USP, UNESP, UFMG, UFRG, Centro Renato Archer, NYU, HU, PU, FP7

Inmetro

UFRJ:


Embryology and Histology Chemical School Pharmaceutical School

Engineering School / Coppe

National Institute of Techchology (INT)

Brazilian Center of Physic Research

Military Institute of Engineering

Funding

Thank you

www.inmetro.gov.br/

- www.renama.org.br
- José Mauro Granjeiro
 - Life Sciences Applied Metrology Directory
 - <u>jmgranjeiro@inmetro.gov.br</u> or <u>jmgranjeiro@gmail.com</u>
 - +55 021 2679 9834
 - +55 021 999883498
 - http://scholar.google.com.br/citations?user=5peGDJgAAAAJ&hl=pt-BR
 - http://www.researcherid.com/rid/D-8289-2012

