

Best practices to develop artificial intelligence models for predicting multilevel effects in Adverse Outcome Pathways (AOP)

Rodolpho C. Braga Altox Ltda

Senior Data Scientist,

Toxicology and Drug Discovery Specialist

rodolpho@altox.com.br

Outline

- The "AOP-based in silico model" overview
- Transparency vs mechanistic interpretability vs predictivity
- AOP-based *in silico* model Framework
 - How to ensure accuracy and mechanistic interpretability?
 - Chemical Representation / Description
 - STR continuous x categorical
 - Prediction of MIE and KEs
 - Model validation and development
 - Chemical Space and Coverage
- Final remarks

Adverse outcome pathways (AOP) framework

An AOP is an analytical construct that describes a sequential chain of causally linked events at different levels of biological organization that lead to an adverse health or ecotoxicological effect (OECD, 2012).

A proposed "AOP-based in silico model" Concept (Altox)

An *in silico* framework used to identify chemicals that can **activate** the associated modular **AOP components** (MIE/KE) and based in these individual multilevel predictions, balanced by adjustments, relationships and weights, **to predict an adverse outcome.**

Transparency vs mechanistic interpretability vs predictivity

- Global statistical models
- **Accuracy**
- ↓ Transparency
- ↓ Mechanistic interpretability

- Alert-based models
- ↓Accuracy
- Transparency
- ↑ Mechanistic interpretability

OECD - Organisation for Economic Co-operation and Development. Report of the expert consultation on scientific and regulatory evaluation of organic chemistry mechanism-based structural alerts. Series on Testing and Assessment, No. 120 PART 1, 2010. Available in: http://www.oecd.org/env/ehs/risk-assessment/45401393.pdf

Structure-toxicity relationship (STR)

"the fragments more related to the absence/decrease of toxicity (green) or presence/increase (red)"

1	Categorical	Predicted Outcome/Assay	Predicted class (Confidence)	STR Contribution Mapping	
6	AOP-Sens [™]	Local Lymph Node Assay (LLNA, OECD 429) Deep Learning categorical model implemented with hybrid descriptors (ECFP6 fingerprint and physicochemical properties: MW, TPSA, logK _{ow} , logD)	Sensitizer (+) (78.4%)	H2N OH	
2	Continuous	Predicted endpoint/Method	Predicted Value (Confidence)	STR Contribution Mapping	
AV.	Pred-Ecotox [™]	LC ₅₀ (Fish, 96hrs)	1.4 mg/L	par	rathio
		Deep Learning decision mo implemented with hybri descriptors	odel 4.7 μM d (87.0%)	O O O O	
				Overall Contribution = 5.33	

Reduce the

Toxicity

Structure-toxicity relationship (STR)

1

parathion methyl

LC₅₀ (Fish, 96hrs)

2 Deep Learning decision model implemented with hybrid descriptors 6.0 mg/L 22.6 μM (88.0%)

7

How to ensure accuracy and mechanistic interpretability?

Detecting mitigating factors (steric, electronic, and detoxifying) by statistical models with a visual probability mapping

9

AOP-based in silico model

Develop and Validate individual models

OECD Principles

key event relationships (KERs) integrating *in chemico, in vitro, ex vivo* and *in vivo* data in the *in silico* models

integrating all multilevel predictions balancing predictivity, key events relationships and WoE adjustments, and to predict an adverse outcome

Best practices to develop artificial intelligence models for predicting multilevel effects in Adverse Outcome Pathways (AOP)

Benchmark - Combined dataset (GMTP, LLNA and human data)

Model	Dataset	Specificity	Sensitivity	Accuracy	Coverage	6971 Chemicals
Alert analysis	197 128: 1A 69: 1B	0.57	0.59	0.58	100%	Measures of goodness-of fit, robustness and
DPRA	195	0.76	0.32	0.54	100%	
DPRA AD		0.73	0.39	0.56	62%	predictivity (External
KeratinoSens	190	0.74	0.27	0.51	100%	validation
KeratinoSens AD		0.78	0.27	0.52	63%	
h-CLAT	161	0.66	0.40	0.53	100%	
h-CLAT AD		0.65	0.41	0.53	65%	
LLNA	997	0.43	0.68	0.56	100%	
LLNA AD		0.46	0.68	0.57	77%	
Human Skin	389	0.83	0.33	0.57	100%	
Human Skin AD		0.82	0.35	0.59	77%	
Combined dataset (GMTP, LLNA and human data)*	6971	0.75	0.92	0.84	100%	
Combined dataset (GMTP, LLNA and human data) AD [*]		0.75	0.92	0.84	93%	
AOP-based prediction	-	0.76	0.71	0.74	100%	

OECD Principles of (Q)SAR Validation for regulatory purposes

logK:

logD:

Metabolism

Number of metabolite

Major metabolite 14.5 %

Sensitizer (+)

1. A defined endpoint;

Chemical

Structure & Predicted

Properties

Predicted Molecular

Initiating Event

(MIE) and KE1

Predicted Cellular

Response (KE2 e KE3)

Predicted KE4

and Adverse Outcome

AOP-based

Prediction

(importance)

3. A defined domain of applicability;

Structural Alerts

Negative (-)

Protein binding alerts according to G

1A: 0 1B: 0

AD: Within

AD: Within

KeratinoSens

Inactive (-)

LLNA

Sensitizer (+)

Conf.: 89.3%

Conf.: 78.4%

Prehaptens and prohaptens - Activation of weak or non-sensitizing substances into sensitizers

Metabolism prediction and potential for haptenation

To assess both direct and indirect haptens, this module predicts the potential for metabolic activation (pro-hapten formation) by known Phase I reactions, i.e., it can be used to identify potential skin sensitizers which require some type of metabolism to an active metabolite (pro-haptens) before initiation of the key event 1 (KE1) in a skin sensitization AOP (OECD Principle 5).

Metabolite (predicted structure)	ОН	но	но	НООН
SMILES	C=CCclccc(0)c(0)c1	COc1cc(CC(0)CO)ccc10	C=CC(0)clccc(0)c(OC)cl	C=CCc1cc(OC)c(O)cc10
Reaction Rule	O-Demethylation	Vinyl Oxidation	Benzylic Hydroxylation	Aromatic Hydroxylation
Metabolite Score	27.7 %	20.0 %	7.3 %	5.6 %
AOP-based Prediction	Sensitizer (+)	Sensitizer (+)	Sensitizer (+)	Sensitizer (+)

http://ec.europa.eu/health/scientific_committees/opinions_layman/perfume-allergies/en/I-3/3-becoming-allergens.htm

Chemical and Toxicological Space for Skin Sensitization

Grouped by Similarity neighbors and Endpoint

Chemical and Toxicological Space for Skin Sensitization

Grouped by Similar neighbors and Endpoint

Chemical and Toxicological Space for Skin Sensitization

Grouped by Similar neighbors and Endpoint

Final Remarks

• A logical framework balancing transparency, mechanistic interpretability and predictivity in a sequential chain of causally linked events at different levels;

• To assess key event relationships (KERs) integrating *in chemico, in vitro, ex vivo* and *in vivo* data in the *in silico* models;

• To design new regulatory decision trees based in predictive Integrated Approaches to Testing and Assessment (IATA) containing *in silico* models;

Thank you for your attention!

rodolpho@altox.com.br