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Outline

* The “AOP-based in silico model” overview
* Transparency vs mechanistic interpretability vs predictivity

* AOP-based in silico model — Framework
 How to ensure accuracy and mechanistic interpretability?
* Chemical Representation / Description
e STR continuous x categorical

* Prediction of MIE and KEs
* Model validation and development
* Chemical Space and Coverage

* Final remarks
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Adverse outcome pathways (AOP) framework

An AOP is an analytical construct that describes a sequential chain of causally linked events
at different levels of biological organization that lead to an adverse health or
ecotoxicological effect (OECD, 2012).

A proposed “AOP-based in silico model” Concept (Altox)

An in silico framework used to identify chemicals that can activate the associated modular
AOP components (MIE/KE) and based in these individual multilevel predictions, balanced by
adjustments, relationships and weights, to predict an adverse outcome.

| Molecular level | | Cellular level | | Organ level | | Organism response |
I I I | I | I |
Chemical structures and ——
physicochemical HmE:::ir{I':'Ité?tmg Key event 2 Key event 3 Key event 4 Adverse outcome
properties
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Transparency vs mechanistic interpretability vs predictivity

Increasing mechanistic interpretability and transparency
.
-

Figure 3.1: Schematic showing the relationship between modelling approach and mechanistic
interpretability and transparency

Global statistical models
MAccuracy

Frequently discussed assumptions:

e Alert-based models
* I Accuracy

J Transparency * MTransparency
J Mechanistic interpretability

* M Mechanistic interpretability

OECD - Organisation for Economic Co-operation and Development. Report of the expert consultation on scientific and regulatory evaluation of organic chemistry mechanism-based structural alerts. Series on Testing and
Assessment, No. 120 PART 1, 2010. Available in: http://www.oecd.org/env/ehs/risk-assessment/45401393.pdf
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How to ensure accuracZ.a.nd
mechanistic interpretability?

Molecular weight (MW)

Permeability
TPSA

(topological polar surface area)

chemical representation

Patterns in the molecule (Note - all substructures!) +
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crmmeeese - Structure-toxicity relationship (STR)

“the fragments more related to the absence/decrease of toxicity (green) or presence/increase (red)”

(Confidence)

Local Lymph Node Assay
(LLNA, OECD 429)

™
Deep Learning categorical model
AOP'SenS . . . . Sensitizer (+)
implemented with hybrid descriptors 28 4%
(ECFP6 fingerprint and (78.4%)

physicochemical properties: MW,
TPSA, logKyy, logD)

2 Continuous Predicted endpoint/Method Pr(ii':::i:::;e STR Contribution Mapping

H2N OH

parathion
LC Fish, 96hrs */
o ) 1.4 mg/L a0 "
Pred-Ecotox Deep Learning decision model 4.7 uM /.\ P /@/N/\
implemented with hybrid (87.0%) o 0

descriptors
Overall Contribution = 5.33

48 49 50 51 52 53 54 55 5.6 5.7
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Structure-toxicity relationship (STR) Pred-Ecotox”

Predicted Value
Predicted endpoint/Method STR Contribution Mappin

parathion
LCso (Fish, 96hrs) Q/
1 >0 1.4 mg/L 2 o #
Deep Learning decision model 4.7 uM 8 X "\
implemented with hybrid (87.0%) . ,
descriptors
REduce the P Overall Contribution = 5.33

48 49 5.0 51 52 53 54 55 5.6 5.7

Toxicity
parathion methyl

LCso (Fish, 96hrs)

6.0 mg/L /°
2 | . /
Deep Learning decision model 22.6 uM '\\o
implemented with hybrid (88.0%)

descriptors .
Overall Contribution = 4.65

35 3.8 40 43 46 48 5.1 54 57 5.9




How to ensure accuracy and mechanistic interpretability?

B Altox
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Detecting mitigating factors (steric, electronic, and detoxifying) by statistical models with a visual probability mapping

Theory

[

Mitigating factor Example inactive chemical
Steric NH,
H.C CH,
Electronic M H3
SO.H
Detoxifying NH,
SO.H

mitigating factors for aromatic amines (mitigating factor in red)

OECD - Organisation for Economic Co-operation and Development.

Report of the expert consultation on scientific and regulatory

evaluation of organic chemistry mechanism-based structural alerts
for the Identification of DNA binding chemicals. Series on Testing

and Assessment, No. 120 PART 1, 2010. Available in:
http://www.oecd.org/env/ehs/risk-assessment/45401393.pdf

NH2

Examples:

Genotox-iS"

2 :H NH2

OH

[

Result: (+) Positive

end of the report.

Category Alert

in vitro
mutagenicity
{Ames alert)
alerts by ISS

Alert model

Method

Random Forest

Machine learning decision model
implemented with the 2D MACCS
fingerprint

kNN

k-nearest neighbors decision model
implemented with the 2D Extended
Connectivity Fingerprint

Deep Learning 3D

Deep Learning decision model
implemented with the 3D conformer
fingerprint like
Extended Connectivity Fingerprint

Statistical models with probability
map

Alerts were found in the molecule. The results are in the table below and a description is provided at the

Alert ID

Primary
aromatic

amine,hydroxyl Woo, Y. T. and Lai, D. Y. (2001). Aromatic amino

amine and its
derived esters

Probability Map

Non-Mutagen

Prediction
(Confidence)

Non-Mutagen
(69.3%)

Mutagen
(71.4%)

Mutagen
(86.8%)

References

Benigni, R., Giuliani, A, Franke, R., and Gruska,
A. (2000). Quantitative structure-activity
relationships of mutagenic and carcinogenic
aromatic amines. Chem.Revs. 100, 3697-3714.

and nitro-amino compounds and their
halogenated derivatives. In 'Patty’'s Toxicology.
Vol. 4." (Eds E. Bingham, B. Cohrssen, and C. H.
Powell.) pp. 969-1105. (John Wiley and Sons,
Inc: New York.)

Mutagen

Probability Mapping
(SAR)

H2

H2

H2

Result: (+) Positive

Alerts were found in the molecule. The results are in the table below and a description is provided at the

end of the report.

Category Alert

in vitro
mutagenicity
(Ames alert)
alerts by 1S5

Alert ID

Primary
aromatic

amine,hydroxyl Woo, Y. T. and Lai, D. Y. (2001). Aromatic amino

amine and its
derived esters

Probability Map

Non-Mutagen

Method

Random Forest

Machine learning decision model
implemented with the 2D MACCS
fingerprint

kNN

k-nearest neighbors decision model
implemented with the 2D Extended
Connectivity Fingerprint

Deep Learning 3D

Deep Learning decision model
implemented with the 3D conformer
fingerprint like
Extended Connectivity Fingerprint

Prediction
(Confidence)

Non-Mutagen

(98.2%)

Non-Mutagen
(85.7%)

Non-Mutagen
(95.0%)

References

Benigni, R., Giuliani, A., Franke, R., and Gruska,
A. (2000). Quantitative structure-activity
relationships of mutagenic and carcinogenic
aromatic amines. Chem.Revs. 100, 3697-3714.

and nitro-amine compounds and their
halogenated derivatives. In 'Patty's Toxicology.
Vol. 4." (Eds E. Bingham, B. Cohrssen, and C. H.
Powell.) pp. 969-1105. {John Wiley and Sons,
Inc: New York.)

Mutagen

Probability Mapping
(SAR)
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AOP-based in silico model

| Organism response |

Adverse outcome

Global ACQP-based in silico model

balanced by KERs, adjustments,

weight of evidence assessment in
a logical framewaork

(5 )

-To assess the results and predictivity
measures in an evidence
assessment.

- To integrate these results with in
chemico and in vifro assessments,
advancing in predictivity measures of

an IATA framework for regulatory

l\_ pUrposes. —/

Develop and Validate individual models

1 OECD Principles
Human and
Structural Alert DPRA KeratinoSens H-CLAT LLNA Combined dataset

| Molecular level [ Cellular level | |_Organlevel | 1 Organism response |
[ | [ | | | | |
'Chemical structures and . R—

physicochemical de:‘atr(l;;llté;mng Key event 2 Key event 3 Key event 4 Adverse outcome ‘

properties

key event relationships (KERS) integrating in chemico, in vitro, ex
vivo and in vivo data in the in silico models

=

integrating all multilevel predictions balancing predictivity, key
events relationships and WoE adjustments, and to predict an
adverse outcome

(11 )
_ Key event Models™ X Combined dataset (GMTP, LLNA and human data)

AOP X 6971 Chemicals

e’
AOP-based algorithm = ij Cj aj; Wy
G=1
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Benchmark - Combined dataset (GMTP, LLNA and human data)

Model

Alert analysis

DPRA
DPRA AD
KeratinoSens
KeratinoSens AD
h-CLAT
h-CLAT AD
LLNA
LLNA AD

Human Skin
Human Skin AD

Combined dataset
(GMTP, LLNA and human data)”

Combined dataset

(GMTP, LLNA and human data) AD"

AOP-based prediction

Dataset

197
128: 1A
69: 1B

195

190

161

997

389

6971

Specificity

0.57

0.76
0.73
0.74
0.78
0.66
0.65
0.43
0.46
0.83

0.82

0.75

0.75

0.76

Sensitivity

0.59

0.32
0.39
0.27
0.27
0.40
0.41
0.68
0.68
0.33

0.35

0.92

0.92

0.71

Accuracy

0.58

0.54
0.56
0.51
0.52
0.53
0.53
0.56
0.57
0.57

0.59

0.84

0.84

0.74

Coverage

100%

100%
62%
100%
63%
100%
65%
100%
77%
100%
77%

100%

93%

100%

6971 Chemicals

Measures of goodness-of-
fit, robustness and
predictivity (External
Validation)
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ALTERNATIVE TOXICOLOGY
ALTERNATIVE TOXICOLOGY

Benchmark - Combined dataset (GMTP, LLNA and human data)

1

6971 Chemicals

0,9

Measures of goodness-of-
fit, robustness and
predictivity (External
Validation)

0,8

0,

~

0,

(o2}

0,

&)

N

0,

0,

w

0,

N

0,

=

o

Balanced Accuracy Specificity Sensitivity Coverage
m Alert analysis = DPRA m KeratinoSens
w h-CLAT mLLNA ® Human Skin

m AOP-based prediction



OECD Principles of (Q)SAR Validation for regulatory purposes

B Altox

ALTERNATIVE TOXICOLOGY

STR Contribution Map

1. A defined endpoint;

2. An unambiguous algorithm;

Sensitizer (+) Non-Sensitizer ()

Predicted class

/\ : A .
Chemical S ‘ Predlcte:r:hy:ltll:::.chemlcal
Structure & ‘ pe: B
Predicted
logK,,: 097
Properties "a Z ~on ook 097

Predicted Outcome/Assay (Confidence) STR Contribution Mapping
Local Lymph Node Assay
(LLNA, OECD 429)
» ] 1
> Deep Learnmg_; categorical model Sensitizer (+)
implemented with hybrid descriptors (78.4%)
(ECFP6 fingerprint and X H2N “OH

physicochemical properties: MW,

Predicted Structural Alerts Metabolism DPRA TPSA, logK g, logD

Mr:le:ular Negative (-) uumbunr;nmbmm Non-Reactive (-) «— . , l0gK o, logD)
la:tli:;i::d!;;:t Protain w]:; -;m::wnmm mGHS Mu)nrlr(‘n;-;ﬂ"-! ::,:w fﬁ‘::;% 4 . A p p rO p r I a te m ea S u rES of
goodness-of-fit, robustness

( KeratinoSens h-CLAT B . o o
s iactve 4 setve (41 and predictivity;
nse
(KE2's KE3) AD: Within  Conf.: 89.3% AD: within  Conf.: 92.4% Prediction Statistics for AOP-based Model
{n = 10 compounds / Similarity = 0.5)

. J

Sensitizer (+)

AOP-based
Prediction

(importance) (Human Skin, h-CLAT, 1B Alert, KeratinoSens, DPRA}

3. A defined domain of applicability; —l

Direct Peptide React! Hi C Ine Activatl
s aptide Reacthvity adeal Lo R — KeratinoSens™ (OECD Local Lymph Node Assay

H Sk
442D) {LLNA, OECD 429) UMAn S

Assay Test

(DPRA, OECD 442D} {h=CLAT, OECD 442E)

{Within the Domain) {Within the Domain) {Within the Domain) (Within the Domain) {Within the Domain)
F-3 = -] -l F-3
g 2 2 B B
a a a a a
; — ; — ) ; — ) —
0.00 025 050 0.75 100 000 0.25 050 075 100  0.00 025 050 075 1.00 000 025 0.50 0.75 100 000 0.25 050 075 1.00
Dice snm u’EE’ET’..ﬁ'?a‘:a. Dice sunl?l.:n:} D ﬂscﬂoml:cty Dice sn?;’ncﬁ

Bal. Accuracy 79 Sel‘ISItlzer (+)
Concordance between KEs: 65.3%
Confidence level (external validation): 100.0%
' Sensitivity .75
1B - T 14
Specificity .83 (+) (+4)
0.0 0.2 0.4 0.6 0.8 1.0

5. A mechanistic interpretation, if possible.

Structural Alert Analysis

Result: (+) Positive

STR Contribution Map

Reactive / Active (+) Non-Reactive / Inactive (-)

Alerts were found in the molecule. The results are in the table below and a description is provided at the
end of the report.

Predicted endpoint/Method P:::::I:::l:js STR Contribution|Mapping

Category Alert Alert ID References
Direct Peptide Reactivity Assay
Skin (DPRA, OECD 442D)
Roberts, D., Api, A.M., Safford, R., Lalko, )
Sensitization Regulatory Toxicology and Pharmacology 72 (2015) . .
Category 1 polared Alkenes 683-693, Deep Learning categorical model Reactive (+) 0—\\ I
(Protein binding Alerts, - sulfonates. . . . 3
EC3 (LLWA) 5 2%: Aptula A.0. et al., (2006) Chemical Research in implemented with hybrid descriptors (82.8%)
NOEL (HRPT)s 500 Toxicology, 19, 1097. (ECFP6 fingerprint and
glem2)

physicochemical properties: MW,
TPSA, logK oy, logD)

12
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soeaniveoxicorose - Prehaptens and prohaptens - Activation of weak or non-sensitizing substances into sensitizers

3 (%) pred-cYP2D"

Chemical Predicted Physical-Chemical . . .
Stru‘::rt':::ea& y Properties: Metabolite SMILES Metabolite Metabolite Bi —
) ) ioassa atabase
Predicted loak o (Chemical Name) (Reaction Rule) Score Database y
> ogkK,,: ]
Properties logD: 1.97 Parent Molecule (Query)
H
Human endogenous Approved Drugs,
Structural Alerts Metabolism DPRA = C=CCclccc(0)c(0C)c1 - 9 Compounds that have been
Predicted . 2 © metabolite investigated (clinical trials)
Molecular Negative (-) Number of metabolites Reactive (+)
Initiating Event Protein binding alerts according to GHS = AD: Within
(MIE) Major metabolite ) (Eugenol)
1A: 0 1B: 0 27.7 % Confidence: 88.6%
OH
C=CCclccc(0)c(0)cl Human endogenous L i
" T " - . 27.7 % : in vitro active at 10 uM
Metabolism prediction and potential for haptenation = (O-Demethylation) metabolite
OH
To assess both direct and indirect haptens, this module predicts the potential for metabolic activation (pro-hapten formation) (4-(prop-2-en-1-yl) benzene-1,2-diol)
by known Phase | reactions, i.e., it can be used to identify potential skin sensitizers which require some type of metabolism to on
an active metabolite (pro-haptens) before initiation of the key event 1 (KE1) in a skin sensitization AOP (OECD Principle 5)
" €£=CCclecc(0C20C(C(=0)0)C(0
/\/cm D\( )C(0)C20)c(0C)cl 25.0% - -
oM OH _~OH . .
( = S =" Ry H (O-Glucuronidation)
T /\/on . | lm/ |I| | /\r/ J‘
(predicted | I| || /J\ / = /\/\_/J\ o
structure) /\/M ‘[’ |
H | Ho || OH H
H
C=CCeleee(O)e(O)el COelee(CCI0)C0)ece10 C=CC(0)elece(O)e(OC)eL C=CCelee(0C)c(0)ecl0 o Sels e (CC(O.) co_)ccclo 20.0 % ALWED endogenous Ui man' bUt. not
l (Vinyl Oxidation) metabolite approved or in trials
(3-(4-Hydroxy-3-methoxyphenyl) -1,2-
Reaction Rule O-Demethylation Vinyl Oxidation Benzylic Hydroxylation Aromatic Hydroxylation propanediol)
N
Metabolite = c// M c=CCclccc(05(=0)(=0)0)c(0C)
27.7 % 20.0 % 7.3 % 5.6 % H d . . i
Sconm cl 11.9% uman en ogenous in vitro active at 10 uM
{ (Sulfation) metabolite

AOP-based
Prediction

Sensitizer (+) Sensitizer (+)

([2-methoxy-4-(prop-2-en-1-yl) phenyl]
oxidanesulfonic acid)

Sensitizer (+) Sensitizer (+)

http://ec.europa.eu/health/scientific committees/opinions layman/perfume-allergies/en/l-3/3-becoming-allergens.htm
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ALTERNATIVE TOXICOLOGY

Chemical and Toxicological Space for Skin Sensitization

Diversity?
Data
DPRA 195
KeratinoSens 190
h-CLAT 161
LLNA 997
Human Skin 389

Combined dataset
(GMTP, LLNA and 6971

Source O Combined dataset @ DPRA @ Human Skin O KeratinoSens @ LLNA @ h-CLAT human data)®
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ALTERNATIVE TOXICOLOGY

Chemical and Toxicological Space for Skin Sensitization
Grouped by Similar neighbors and Endpoint .

Chemical
Structure &
Predicted
Properties

Predicted
Molecular
Initiating Event
{MIE)

Predicted
Cellular
Response
(KE2 e KE3)

AOP-based
Prediction

Source O Combined dataset @ DPRA @ Human Skin O KeratinoSens @ LLNA

AOP-Sens”

Predicted Physical-Chemical

Properties:
logkK,: 235
logD: -1.24
Structural Alerts Metabolism DPRA
Positive (+) Number of metabol ites Reactive (+)
Protein binding alerts according to GHS AD: Outside
Major metabolite
1A: 0 1B: 1 14.5 % Confidence: 75.9%
KeratinoSens h-CLAT
Inactive (-) Active (+)
AD: Outside Confidence: 83.8% AD: Outside Confidence: 72.3%

Sensitizer (+)

Concordance between KEs: 68.5%
Confidence level (external validation): 83.3%

Potency

® h-CLAT
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ALTERNATIVE TOXICOLOGY

Chemical and Toxicological Space for Skin Sensitization

Chemical Predicted Physical-Chemical
Structure & Properties:
Predicted

logk,,: 0.97
Properties GH i logD: 0.4

Structural Alerts Metabolism DPRA
Predicted .
Molecular Negative (-) Mumber of metabolites Non-Reactive (-)
Initiating Event Protein binding alerts according to GHS 4 AD: Within
(MIE) Major metabolite
1A: 0 1B: 0 14.5% Confidence: 88.3%

Sensitizer (+)

AOP-based
Prediction Concordance between KEs: 62.8%
Confidence level (external validation): 87.5%

Potency

Source O Combined dataset @ DPRA @ Human Skin O KeratinoSens @ LLNA @ h-CLAT 1

1A
(++)
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ALTERNATIVE TOXICOLOGY

HAltox
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Number of metabolite:
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Structural Alerts
Negative (-)
lerts according to GHS
1A: 0 1B: 0
KeratinoSens

AD: Within Confidence: 89.3%
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Final Remarks

« A logical framework balancing transparency, mechanistic interpretability and
predictivity in a sequential chain of causally linked events at different levels;

- To assess key event relationships (KERS) integrating in chemico, in vitro, ex vivo
and in vivo data in the in silico models;

- To design new regulatory decision trees based in predictive Integrated
Approaches to Testing and Assessment (IATA) containing in silico models ;
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Thank you for your attention!

rodolpho@altox.com.br
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