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Abstract: We present a method for extracting a specific 

signal from a blind instantaneous mixture. The method is 
developed using a priori information about the temporal 
structure of the desired signal in the Reproducing Kernel 
Hilbert Space. The approach here carried yields better 
results than methods present in the literature for Blind 
Source Extraction using temporal structure.  
Keywords: Reproducing kernel Hilbert space, blind source 
extraction, nonlinear filtering. 

1. INTRODUCTION 

In Blind Source Extraction (BSE) [1] one wants to recover a 
desired signal ( )is t  that is linearly mixtured with a finite set 
of sources. Representing the sources as 

1( ) [ ( ),..., ( ),..., ( )]T
i nt s t s t s t=s  , the problem is called 

blind because we suppose an unknown mixing matrix A  
yielding the mixture =x As . For recovering ( )is t  from 
the observations x , further suppositions need to be made on 
the structures of the sources s . In Independent Component 
Analysis (ICA) [2], for example, one supposes that the 
signals ( )ks t  are statistically independent. This is a strong 
statistical supposition, but has been proved to be useful in 
practical problems. Unfortunately, the methods based on 
ICA simultaneously separate all the sources in s  and, when 
we are only interested in one signal, it can be a problem. For 
example, in large array records such as 
Magnetocardiography (MCG) several channels are available 
and only feel signals are interesting [1]. In this case, separate 
all the sources and then find the desired ones can be 
infadoneous. 

 This problem can be solved using more specific 
information about the signals in the mixture, such as their 
kurtosis [3] or temporal structures [4-7]. The later is what is 
used in this paper. 

 Furthermore, we use a kernel method [8] for filtering the 
desired signal. Reproducing Kernel Hilbert Space (RKHS) 
methods has recently been introduced in the measurement 
and signal processing literature with large success because it 
provides an adequate mathematical tool for solving several 
problems [9]. In RKHS we suppose that a positive definite 
symmetric function,κ , called kernel, reproduces an inner 

product in a high dimensional Hilbert space H  . In words 
we mean that for two vectors x and y in the sample space 
V , there is a nonlinear map, :V Hφ →  , such that  
 

( , ) ( ), ( )
H

κ φ φ=x y x y  (1) 
 
The equality in (1) is often referred as the “kernel trick”. 
With the kernel trick we can evaluate the inner product in 
H , indirectly by κ , which yields nonlinear methods that 
can be manipulated by linear algebra. There are several 
advantages in extending linear methods to a nonlinear 
RKHS. In Kernel Support Vector Machine (KSVM) [10], 
one can guarantee the successfulness of the classification 
due to Cover’s theorem [11] for classification in high 
dimensional spaces. The recently introduced Kernel Least 
Mean Square (KLMS) [12] algorithm also surpasses the 
traditional LMS algorithm by achieving smaller errors and 
has faster convergence. 
 As far as the authors know, this paper is the first attempt 
to develop a RKHS method for extracting specific signals 
using their temporal structure.  
 The reminder of the paper is organized as follows. In 
Section 2 we present our RKHS method. Section 3 is 
devoted to experiments for illustrating extractions of 
specific signals in blind mixtures. In Section 4 we conclude 
the paper.  

2. METHOD 

For developing the method we will suppose a Hilbert 
space H , in a fairly informal, but intuitive way. For more 
precise definitions of RKHS we refer to [13]. Let 

1 2( ) [ ( ), ( ),. . . ,( )]T
nt x t x t x t=x  be a set of observations, 

with [1, 2,..., ]t m∈ . Now, using a nonlinear map, φ , we 
define the feature space H  by the set of all finite linear 
combinations of the vectors ( ( ))tφ x .  Thus, each vector 

H∈ξ can be expressed by  
 

1
( ( ))

m

j
j

jα φ
=

=∑ξ x  (2) 
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For practical purposes let us write ( ) ( ( ))t tφ=ξ x  , where 

1 2( ) [ ( ), ( ),. . . ,( )]T
kt t t tξ ξ ξ=ξ , reminding that k  can be 

possibly infinite depending on the choice of φ  [8]. 
Supposing that the vectors ( )tξ  have zero mean and were 
generated by an unknown instantaneous mixture, we have 
 

( ) ( )t t=ξ As  (3) 
 
where A  is an unknown k k×  mixing matrix and ( )ts  
are the source vectors. As stated in Section I, our problem is 
to extract the signal ( )is t . Thence, we must find a vector 

H∈ω  satisfying 
 

( ) , ( )
H

y t t= ω ξ  (4) 
 
where ( )y t  is the best estimation, in mean square sense, of 

( )is t . Assuming the existence of a positive definite function 
κ  that makes (1) true, we can rewrite (4) as 
 

1

1

( ) ( ), ( )

( ( ), ( ))

m

j H
j

m

j
j

y t j t

j t

α

α κ

=

=

=

=

∑

∑

ξ ξ

x x
 

 
 
 

(5) 

 
where we assumed the coefficients jα  to satisfy 

1
( )

m

j
j

jα
=

=∑ω ξ   because H∈ω .  For a proper 

definition of an objective function to estimate ω , note that 
if we assume φ  as the identity mapping and  

( ( ), ( )) ( ) ( )Tj t j tκ =x x x x , our approach turns into a 
linear filter for extracting ( )is t . Such filter was studded by 
Barros and Cichocki in [6]. They proposed that the 
maximization of the autocorrelation [ ( ) ( )]E y t y t τ−  is 
sufficient to approximate ( )is t   by an equation as the one in 
(5). Further the value of τ  is assumed to be a priori known 
and carries specific information about the desired signal. 
This a priori information can be resumed as 
 

[ ( ) ( )] 0
[ ( ) ( )] 0

[ ( ) ( )] 0

i i

i j

i j

E s t s t
E s t s t i j
E s t s t i j

τ

τ

− ≠
= ∀ ≠

− = ∀ ≠

  
 

(6) 

 
With ( )ts  satisfying (6) we generalize Barros and 
Cichocki’s approach by assuming κ  as any positive definite 
symmetric function. In this generalization, we propose the 
following sample estimation of the objective function 
 

1

1 1 1

1( ) ( ) ( )

1 ( ( ), ( )) ( ( ), ( ))

m

j

m m m

j k
j k l

J y t y t
m

j l l k
m

τ

α α κ κ

=

= = =

= −

=

∑

∑∑∑

α

x x x x

  
 

(7) 

 
where 1 2[ , ,..., ]T

mα α α=α . In matrix notation we have  
 

( ) TJ τ=α α KK α  (8) 
 
where ( , ) ( ( ), ( ))i j i jκ=K x x  is the Gram matrix of the 
observations in the feature space. Note that this matrix is 
symmetric. The matrix  τK  is constructed by circularly 

shifting the rows of K , mathematically we can write 
 

( , ),
( , )

( , ),
t i if t

t i
n t i if tτ

τ τ
τ τ

− >
=  − + ≤

K
K

K
 (9) 

 
Fixing the norm of α , the extremization of (8) converges 

to the following eigenvalue problem 
 

( )Teig τ τ= +α KK K K  (10) 
 
where ( )eig ⋅  returns the normalized eigenvector 
corresponding to the maximum eigenvalue of the matrix in 
its argument. Using the theory here developed we propose 
Algorithm 1 
 

Algorithm 1 
1 - Input: whiten data ( )tx , delay τ  
2 - Define: the kernel function ( , )κ ⋅ ⋅  
3 – Do 1 - calculate K  
 2-α receives the second 

eigenvector of T T
τ τ+K K K K  

4-Return T=yα K  
 
 There is one last point to be noted before we test the 
proposed algorithm. The fact that we developed our theory 
supposing the vectors ( )tξ . Despite of the simplicity, this 
cannot be always guaranteed in practice. For this reason the 
first eigenvector of  T T

τ τ+K K K K  captures the dc-
component of the signal [15] and our desired signal source 
is extracted when α   is its second eigenvector. 

3. EXPERIMENTS 

The validity of our method can be simply proofed by 
generating a source 1 2 3 4( ) [ ( ), ( ), ( ), ( )]t s t s t s t s t=s  with 

31, 2,...,10t = . Taking  1( )s t  to be a sine function with 

period of 13 samples. Assuming that 2 ( )s t  and 3( )s t  are 

random Gaussian signals and 4 ( )s t  is a random signal with 

uniform distribution. One can prove that ( )ts satisfies the 
conditions (6) for every delay τ . This way, it is expected 
that algorithms for BSE extracts the sine function from a 
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blind linear mixture, regardless to the value of  τ . But 
better results should be considered more likely for 13τ =  
or multiples, since we are dealing with finite sample signals. 
We mixed the sources ( )ts  with a random matrix A , 
giving ( ) ( )t t=x As . The signal ( )tx  is used as input to 
Algorithm 1 with the kernel function chosen to be the radial 
basis function [8] 
 

2

( ) ( )( , ) exp
2

T

σκ σ
 − −

= − 
 

v u v uv u  (11) 

 
with size 10σ = . Using the kernel (11), the nonlinear map 
φ  that satisfies (1), transform the vectors ( )tx  to functions 
in an infinite dimensional sphere in the Hilbert space [13]. 
This is why we expect the proposed algorithm exploiting 
more deeply the temporal structures of the sources. For 
comparison, we also used ( )tx  as input to the algorithms 
proposed by Barros and Cichocki in [6] and to the algorithm 
of Zhang and Yi [7]. Both algorithms uses information 
about the autocorrelation function for extracting specific 
signals. 
The results of that experiment were fairly favorable to our 
proposed algorithm. For 13τ =  the three compared 
algorithms extracted the sine function, but when get far from 
that optimum value the methods in [6] and [7] extracted 
with distortion or failed to extract the sinusoid, while our 
method don’t. In Fig. 1 we plot the extracted signals for 

30τ = . A more conclusive experiment can be performed 
by making τ  vary in a range and analyze the error between 
the extracted signal and the original one in  1( )s t  for 
several trials. We varied τ  from 0 to 50, mixing the sources 
with different randomly generated matrices, A . For each 
delay τ  we repeated the extraction procedure 100 times and 
calculated the Root-Mean-Square Error (RMSE) between 
the extracted signals and the original one. The averaged 
value of the RMSE in function of τ  for each compared 
algorithm is shown in Fig. 2. One can see that our algorithm 
is the most robust with respect the choice of τ  between the 
compared algorithms for extraction of specific signals. 

4.  CONCLUSION 

In this work we introduced a kernel method for extraction of 
specific signals using a priori information about their 
temporal structures. We ran simulations that shown that the 
present method is more robust, to error in the a priori 
information, than the presents in the literature [6][7]. The 
method is based only in second order statistics of the data in 
the Reproducing Kernel Hilbert Space and does not need the 
independence assumption for separation. 
 We believe that the robustness of the method is due to 
the relation of kernel methods with information processing 
techniques using Parzen estimation [14]. In future works we 
intend to formalize this relation and test our proposed 
method for extraction of real word signals. 

 
Fig. 1.  Extracted signals for miscalculated 30τ =  (the optimum would be 13τ = ). 1) Original sine-function signal. 2) Extracted signal with Algorithm 1. 

3) Extracted Signal with Zhang’s algorithm. 4) Extracted signal with Barros’ Algorithm. 
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Fig. 2.  RMSE between extracted and original signal in function of time delay for extraction of sine function in noise. 
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