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Abstract : The intended audiences are ISO 17025
Calibration Laboratories, ISO 9001  Meter
Manufacturers, Electric utilities, and Organizations
involved with electricity measurement. Participants
will gain insights in recognizing the need to better
define methods of energy measurement in order to
have a better understanding on why errors may be
present during power or energy calibration of
equipment and how various error sources effect
measurements.

This paper will show the possible differences and
potential influences associated with industry accepted
measurement algorithms associated to electricity
measurement. Radian Research is a world leading
manufacturer of primary energy reference standards
for electric power and has done extensive studies to
help ensure that accurate testing of electrical power
and energy measurement is maintained over a broad
range of testing conditions.
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1. Introduction

Establishing how a given electricity measurement
device measures active, reactive, and apparent
energy is of paramount concern to electric utility
companies, manufacturers of energy meters, energy-
reference-standards, and energy meter test systems.
Although an energy meter can be identified as
belonging to a particular accuracy class, it is not
generally given under what real-world ambient load
conditions the measurements of a meter are
applicable. With the introduction of digital technology
and digital measurement techniques, there arises the
introduction of a purely mathematical abstraction of
the energy measurement process within modern

meters. Therefore, it is no longer possible to predict
how a meter will respond by only examining the
analog component; the digital component is a key
element within the measurement procedure as well
(which is well hidden from everyone but the designer).
It can be shown that different meters tend to contain
different solutions to the energy measurement
equations. Various meters can be grouped together,
for they produce measurements that are identical to
one another under identical environments conditions.
While others form separate groups, each group
establishing an equivalent accuracy class of
measurements among themselves under the same
environmental conditions. Establishing a procedure or
method to determine where a given meter fits into a
“reference set of solutions to the energy measurement
equations” can be instrumental to meter
manufacturers in establishing under  what
environmental conditions the accuracy of their meter
holds good. It should be clearly noted that the goal of
this paper is not to be critical of the measurement
algorithm used — much progress has been made over
the years in the advancement of electronic energy
meter performance. Instead, the goal is to
demonstrate the need to define the measurement
approach in order to properly compare its performance
to a reference. Unfortunately the measurement
approaches are not consistent between devices and
only when the methods are defined can the device
accuracy be compared to a reference.

The purpose of this study is to investigate the error
behavior of the set of classic energy metrics in the
presence of particular distortions. The set of metrics
under investigation have the forms:

« RMS Voltage :

v =1/i “Tdt @
KT 7
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 RMS Voltage Squared:

1 T+KT
Vi=— vidt (2
KT 7
* RMS Current:
1 ok,
= =it (3
KT
* RMS Current Squared:
+K
T
KT 7
» Arithmetic Apparent Power (VA):
S, =V (5)

e Vector Apparent Power (VA):

S.=\P*+Q* ()

» Active Power (W):
_ 1 pr+kT .
P_E J; vidt )
* Integral Reactive Power (VAR):

Q I%J;HKTVDidt where:

v, = wj vadt (8)
» Shifted Reactive Power (VAR):
Q _ 1 jr+kTV |dt
/2 kT r O
where: vV, = Vv(t +l) 9)
P 2w

* RMS Reactive Power (VAR):

Q.. =VS*-P?> (10

« Power Factor:

P
PF=— 11
S (11)

1
Where: T is the fundamental Period T :T, fis

the fundamental frequency
T is integration start time.

k =1,2,3,... the number of cycles
integration is taken over.

V(t) the in-phase voltage

V;(t) the quadrature-phase voltage

i(t) the current.

w =27

This study introduces a particular type of distortion and
ask the question: due to the presence of a particular
distortion D, and given a set of metrics y, what are
their expectations (their predicted value in the
presence of a given distortion D), i.e. E(y, | D).

In addition, what are the errors of the metrics relative
to pure sinusoidal conditions (distortion free).

This study investigates three distortion prototypes.
* Dg: Zero-mean additive Gaussian noise on the
voltage and current axes.
e D; An m™ order harmonic on the Voltage axis
and an n" order harmonic on Current axis
were the orders can be the same or differ.

2. Power Measurements Derived from a
Measurement Basis

Before proceeding, a brief analysis of power estimates
will be investigated that assumes no a priori
knowledge concerning the nature of the distortion on
the voltage and current axes. This is accomplished by
measuring a set of fundamental metrics and then
deriving others from this measurement basis. After the
additional estimates are derived, their errors can be
directly computed.

Let the following define the measurement basis:
Measured RMS Voltage Squared: \/ ?

Measured RMS Current Squared: | ?
Measured Phase Angle: 4

And their ground truth counterparts:
True RMS Voltage: V.2
True RMS Current; |§
True Phase Angle: 90

We take as the error equations for the measurement
basis the following:

_VZi-VS
fVZ_T And VZ:VOZ(“‘(VZ) (12)
_17-1g
b s And 12 =15+ (13)
59_9—90

21 ang 770+ 278, (14)
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$ye €2

, ,59, are the normalized errors for our
measurement basis.

Next, the expected estimates for: \4 , | , S, P, Q,

PF will be derived based upon this measurement
basis. This initial analysis assumes sinusoidal forms
for these metrics, which is all that can be managed
with the measurement basis given. This will be treated
as starting point for the rest of the analysis. As the
analysis progress more general non-sinusoidal forms
will be introduced. Useful information about the error
behavior of the listed metrics will be illustrated for this
initial case.

2.1. RMS Voltage and RMS Current

RMS voltage and current is simply derived form the
square roots of the \/2 and | 2:
V-V, _

\ =Vo 1+§tv2 and fv = 1+§(V2 -1

0
I -1,

I =1, j|_+5I2 and £ =

=J1+¢,. -1

I0

2.2. VA based upon S=V|

VA is derived from the RMS voltage and current
computed in section 2.1 above:

S=ViI :Volo\/(1+ <. )(1+ ¢ 2) and the VA error is
then determined to be:

S-S, _VI-V.I,

$s

S0 Volo
_Volox/(l+fv2 )(1+E|2)_Vo|o
B VOIO

:\/(1+5V2)(1+5,2)—1 (15)
2.3. Watt based upon P =V/I| cos(6)

The Watt measurement is expressed as:

P =VI cog(6)
:VOIO,/‘1+ ¢, ﬂ1+ ' )cos(&o + 27%,)

The error equation for Watt is expressed as follows:

_P-R, _Vicos(d) -V, A, cos(F,)

(16)

“r P, V, A, cos(d,)
VI flT &, JL+ € ) costd, +27E,) -V, 1, cos(8,)
) V,l, cos(6,)

/ \/ \

_J1+ €, J1+ &, )cos(6, + 27,) - cos(8,)
) cos(d,)

(L+ &, )L+ & Ncost8,) cos(27%,) - sin(6,) Sin(27%,)) - cos(6,) _
cos(6,)

i cos(27%,) - 1
$p = W[_ tan(6,) sin(27fg)j ' *

2.4. VAR based upon  Q =VI sin(d)

The VAR measurement is expressed as:
Q =Vl sin(6) :V0I01/(1+ ' ﬂl+ ' )sin(é?0 +27%,)
The error equation for VAR is expressed as follows:
£ = Vons A sin(d) -V, A, sin(6,)
VAR .
VoA, sin(g,)

_VOA),/11+ fvz ﬂl+ EAZ )sin(t?0 +27%,) -V, A, sn(6,)

) V, A, sin(6,)

(1+ gtv)(:l'-i- gtA)Sin(eo + 27f9) _Sin(go) \
sin(é,)

Sn(@,)cos27z,) |__
e 00 &) pantt )~ _

sin(é,)

i cos(27%,) - (18)
{VAR - m("’ COt(go)Sin(zlfg)] '
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2.5. Power Factor

The power factor follows from its definition:
p V., fla+ ¥ 1+ §, icos(é?0 +27%,)

PF=—=
S Vol [ €, Jir é) (19)

= cos(6, + 27,

The corresponding error for power factor is:
i = cos(g, + 27i,) — cos(6,)
i cos(6,) (20)

= cos(27%,) — tan(6,) Sin(27%,) - 1

2.6. Conclusion regarding measurement basis

It is important to keep in mind that all the metrics
derived from the measurement basis inherit the errors
from the measurements basis.

3. Do Zero-mean additive Gaussian noise on the
voltage and current axes

Assume the voltage and current are corrupted by a
zero mean Gaussian noise distribution. The voltage
and current signals as seen by the measurement
device are defined as follows:

V(t) =v(t) +77,(t) and i(t)=i(t)+7 (t)

Where: V(t) and |~(t) are the potential and current
as seen by measurement device.

V(t) and i(t) are the true potential and
current.

n,(t) and 7, (t) are the zero mean additive
white noise sources.

3.1. RMS voltage and RMS current in the presence
distortion Dy

Let Vo and |y represent the true RMS voltage and
RMS current integrated over cycle T:
1 T+KT 1 T+KT |
—.[ vadt and |, —.[ i2dt
KT 7

V. =
° VKT

The variance of the noise distributions can be defined
relative to the true RMS voltage and RMS current
squared by:

%Jjﬂalﬁdt =VZ?0? and %LrJrkT/]izdt =1207?

The RMS voltage squared as seen by the
measurement device is given by:

e[ wen)’d

KT kT
IT Tviat+2[ e+ [ plt 1)
KT
B J.:H(Tvzdt+J'r+ n2dt
kT

Since 7, (t) is zero mean and independent of v, then:

T+KT
j V/7th =0 . The expectation of this product

T
integrated over a period T:

E(vn,) = E(V)E(7,) =0.
The measure RMS Voltage Squared will be:
V2 =VZ +V20? =V2({1+02) and

V2 _V02 :VO (:I'-I-O-V)_VO2 - 2 (22)
V2 V2 UV

£, =

Integrating similarly, the RMS Current Squared
measurement wiII be:

12=12+1207 = 12(1+ 0?) and
|2 —|2 12(+0?)-12 _
EIZ: |20: |2| =0, (23)

o

The measure RMS Voltage and Current would be the

square roots of \/? and | ?:
¢ =\1+0] -1

0
-1, _

\
V=V, 1+0—\3 and ¢, =

| =lyy1+ 07 and ¢ = 1+07 -1

0

3.2. Arithmetic VA in the presence distortion D,

The arithmetic VA is determined from the RMS voltage
and RMS current found in section 3.1:
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Sy =Vyloy/ll+ a2 1+ 0?) and
&, =+ oi jirot)-1 24

3.3. Vector VA in the presence of distortion Dy

Vector VA is a derived from the measurements of Watt
and VAR. The defining equation for vector VA given in
section 1.0 is:

S =,P?+Q? (25)
Substituting the measurements derived above:

S ={R’+Q; and & =0

Note: Vector VA has no inherent error, whereas
Arithmetic VA has an inherent error by the virtue of
how it is derived. The Arithmetic VA can not avoid the
contribution of the noise power density due to RMS
voltage and current.

3.4. Watt in the presence distortion D,

The integral definition of Watt with the voltage and
current functions given in section 3.0 above is
evaluated as follows:

P [ o= 2 [ 0+, 00+, 0

r+kT | T+KT THKT i
:L V|dt+Jr vqidt;-lj} |/7th+'|; ”ﬁidt:;I_LHHVidt

P =V,l,cos(8,) (26)

And the Watt error would be: &, = 0.

For the ideal integrator, the Gaussian noise totally
integrates out of the equation.

Note: the noise distributions are zero mean and
independent from on another, therefore:

EM/74) = E(W)E(7,) =0,
E(An,) =E(AEM) =0
E(2n4) = E(y)E(7,) =0

3.5. Integral and Shifted VAR in the presence
distortion D,

Given: the quadrature-phase component of voltage VD

is computed by integration or phase shifting. The
integral or shifted definition of VAR with the voltage
and current functions given in section 3.0 above is
evaluated as follows:

1 pr+kT _ ~

=— Vi dt
KT F

1 pr+kT

== O+2,0)i0 +i,0)d

Q

[ vt [ v, dt:TL””imdt [t _ % [

Q =Vl sin(6;) (27)

And the VAR error would be EQI =0

For the ideal integrator, the Gaussian noise totally
integrates out of the equation.

Note: the noise distributions are zero mean and
independent from on another, therefore:

ENVw74) = ENVL)EML) =0,
E(A7,) =E(AE(@,)=0
E(7n4) =E@M)EMN,) =0

3.6. RMS VAR in the presence of distortion  Dg

Computing RMS VAR with respect to the power
triangle yields:

QI‘I’T\S = \ Si - P2
= V212(1+ a2 i+ 0?)-V21Z cos?(6,)
Qe =Vsl, (1+ ol )(l+ Uf)— cos’ (6,)

(28)

=V,loy/SiN?(6,) + 07 + 07 + 007

&, =\1+csc?(8,)lo2 +0? +020?)-1 (29)

Note: Since Arithmetic VA has an error component
related to the noise power density, then RMS VAR will
inherit this error.
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3.7. Power Factor in the presence of distortion Do

3.7.1. Power Factor in the presence of
distortion D : Arithmetic VA

If the power factor is derived using Arithmetic VA
the expected estimate would be:

P V, 1, cos(6,)

PFA =—=

Sa V,loyll+ a2 i+ o?)

30
cos(6,) 0
J+o firor)
The error of the estimate would be:
1

EPF = -1 (31)

\/(1+ 05)(1+ 0,2)

3.7.2. Power Factor in the presence of
distortion D ,: Vector VA

If the power factor is derived using Vector VA the
expected estimate would be:

P
PF =2
S
the estimate.

=cos(f,) and = =0, noerrorin

3.8. Conclusions regarding distortion ~ Dg: Zero-
mean additive Gaussian noise

It is clear for the case of zero-mean additive Gaussian
noise, a measurement device can not avoid including
noise density into RMS Voltage and RMS Current
measurements.

Secondly, if the integration does not involve the noise
density, i.e. the noise is NOT squared in the
measurement process, and the noise is zero mean,
the noise integration will vanish. This is true in the
case of Watt, Integral and Shifted VAR. Since the
noise on the voltage and current axes are
independent. Integration is an optimal estimator for
these two metrics in the presence of zero-mean
additive Gaussian noise.

Thus, metrics derived from RMS voltage and RMS
current inherits noise power density components,
thereby adding error to these derived metrics. We see
that arithmetic VA, RMS VAR, and arithmetic PF,
inherit errors from RMS Voltage and RMS Current.
And since vector VA and PF are derived from Watt

and Integral or Shifted VAR, they have no inherent
error.

4. D;: Am"™ order on voltage and an " order on
current — harmonics on all axes

Assume the voltage axis is corrupted by a harmonic
component of order j and the current axis is corrupted
by a harmonic component of order k. The voltage and
current signals as seen by the measurement device
are defined as follows:

v(t) = N2V, (sin(at) + Bsin(mat +6,))) And

i(t) =21 ,(sin(at + 8,) + asin(nhat +6,))
Where: V(t) and i(t) are the current and potential as
seen by the measurement device

V, and |, are the expected RMS current and

potential.
M, N the harmonic number for the potential

and current axes respectively
« = 27f where f is the fundamental

frequency.

THD, =10083% or B =,/THD, /100
THD, =100a? or a =+/THD, /100

4.1. RMS voltage and current in the presence
distortion D;

Note: sin®(at +6,) =%(1— cos(2at +26,))

cos® (at +6,) = %(1+ cos(2at +26,))
And
T+KT ., 1 er+kT
L sin?(at +6,)dt = EL (1- cos(2at + 26,))dt

- %( [t~ [ cos(2at + 26, ct)

Tl t —1 in(2at + 26,
—(t—-—sin +
2( o ( b))

T

1 .
((r+kT —Zwsn(2wt+290+k2n)j (32)

1
2 —(r ~ L Sn@at+ 290))
2w
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And
r+KT 2 1 pr+kT
L cos?(at + 6,)dt = > j (1+ cos(2at + 26,))dt

- %( [t + [ cos(2at + 28, )t)

T+KT 1

1 .
—(t+—sin(2wt + 26
2( o ( b))

T

((r +KT + is;in(2a1 +26, + kZZT)j
-1 20 KT (39

2 2
—[r +isin(2a1 + 26?0))
2w

The RMS current squared is given by:
L Mzt :@j””(gn(ax +8,)+asin(nat +8,))2dt
KT o KT ° "

J-rﬂ-kTsinZ(M +90)dt (34)

2|2 T+KT | A
==0 +2ar sin(at + 8,)sin(nat + 6,)dt

KT
T+K
+a?| Tsin?(nat + 6,)dt

Evaluating each of the three integrals above, we have:

2|2 T+KT
1): k_'l? _dn*(at+g)dt=1g

Because Sin(a«t) , cos(at) ,sin(nat), and
cos(nat) are mutually orthogonal:

[ sin(at)sin(nat)dt =0
[ sin(at) cos(nat)dt = 0
LHKT cos(at) sin(nat)dt = 0
[ cos{at) cos(nat)et = 0

[ sin(at + 8;)sin(nat + 8, )t
o (sin(at) cos(8,) + cos(at) sin(8))
N I (sin(nat) cos(8,) + cos(nat) sin(g,) )t

Multiplying this out we have:
T+KT

= cos(8,) cos(b, ) j sin(et) sin(net)dt +
T

cos(8,) sin(6, )LHKT sin(at) cos(nat)dt +

sin(é,) cos(8, )J'THKT cos(at) sin(nat)dt +

sin(g,)sin(8,) J'THKT cos(at) cos(nat)dt =0

Therefore 2):

2
4'°T“ [ sin(at +)sin(nat +6,)dt =0 (39)

2 .,2
and finally 3): 209

+K ;
Jj TS|n2(na1+9n)dt=I§af2
1> =12(1+a% and
12-12 _120+a?)-12 _
£. = T =qa (36)

2
I0

o

Based on the analysis above for RMS voltage squared
would be:

V2 =%j””v2dt ~V2(L+ B%) And

2 _\y2 2 2\ 2
ViVs Vo (1+ﬁ2) Vo g2 @)
VO VO

£, =

The measure RMS Voltage and Current would be the
square roots of \/? and | ?:

V =V,/1+ B% and &, V-V =1+ p% -1
1

VO
| =1pIra? and & =110 =1va -

Lo

4.2. Watt in the presence distortion D,

The integral definition of Watt with the voltage and
current functions given in section 1.0 above is
evaluated as follows:

1 pr+kT
P=— vidt

KT 7
AR jr+kT (sin(at) + Bsin(mat +6,,))

KT % (sin(at +86,) +asin(nat +6,))dt

—_ 2\/OIO

COKT

N, |
KT

[ sin(at)sin(at +6,)dt +

jr”” sin(at) Sin(nat + 8, )dt + (38)
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2v0| o So ol (" " sin(met + 6, )sin(at + 8, )dt +

2v0| 0”'3 So " " sin(mat + 8, )sin(nat + 8, )dt

Evaluating each of these integrals:

[ sin(at)sin(at + §;)ct = %

J;HkTsin(ax)sin(nax +6)dt =0

Orthogonal components

[ sin(mat +86,)sin(at + ,)dt =0

Orthogonal components

jr””sin(max +6_)sin(nat + 6, )dt

_ ¢r+r(Sin(mat) cos(d,,) | sin(nat)cos(8,) at
_I +cos(mat)sin(8,) \ +cos(nat)sin(é,)

= cos(d,,) cos(é, )J'THKT
cos(6,)sin(8,)[ " sin(mat)cos(nat)dt +  (39)

sin(mat) sin(nat)dt +

sin(é,,) cos(8, )J'THT cos(mat) sin(net)dt +

sin(g,,)sin(é, )J':+kT cos(madt) cos(nat)dt

The middle two integrals vanish because of the
orthogonality, and the first and last integrals vanish if
MZ N pyt if the voltage and current have the same
harmonic order then:

cos(8,) cos(,)[ " sin?(mat)ct = kT 003(9; ) cos(6,)
And | |
Sln(é’ )Sln(g )I CcoSs z(mwt)dt - kTSln(Hr;)gn(gn)

Finally we have:
T+KT

j sin(mat +8_)sin(nat +6,)dt =0 if m# n
T

[ sin(mat +8,) sin(kat + 6, ot

_ KT (cos(8,) cos(8,) +sin(6,,)sin(6,)) “O
2

_KTcos(6,-6,)
2

, if m, n have the same harmonic

order

Substituting the above results into the equation for
Watt:

P =V,l,(cos(8,) + aBcos(8, - 6,)) And
ép = apcos(6, ~ b,,) if voltage and current have

cos(6p)

the same harmonic order.

4.3. Arithmetic VA in the presence distortion D,

The arithmetic VA is determined from the RMS voltage
and RMS current found in section 2.1:

S, =Vl L+ g2 )i+ a2) And
&, = Ja+ [? 1+ a2 j—l (41)

4.4, Integral VAR in the presence distortion D,

Given: the quadrature-phase component of voltage V

is computed by integration. The integral definition of
VAR with the voltage and current functions given in
section 4.0 above is evaluated as follows:

Vo (1) = a2V, [ (sin(at) + Bsin(mat +6,) it
= w2V, (J'sin(ax)dt + ﬁjsin(max + Hm)dt)

= w2V ( cos(at) + 2 cos(ma + )j
mow
= \/Evo[cos(ai) +§c05(mwt + Hm)j

1 pr+kT
szﬁjr vyidt =

AN ma(cos(wt) + %cos(max + Hm)j

kT I
(sin(27t +8,) + asin(2mf t +8,))dt
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2Vl B
mkT
2Vl a8
mkT

LHkT cos(mat + . ) sin(at + 6, )dt + (42)
jr”” cos(mat + 8. )sin(net + 8, )dt

Evaluating each of these integrals:

[ cos(at)sin(at +8,)dt = KT sn(@%)

T+KT
J. cos(at)sin(nat + &,)dt = 0 Orthogonal
T
components
+KT A
[ cos(mat +6,)sin(at +6,)dt = 0 Orthogonal

components

L”” cos(Mmat + 6, )sin(nat + 6, )dt
kT (cos(mat) cos(8,,) — sin(mat) sin(d,,))
B I (sin(nat) cos(8, ) + cos(nat) sin(8, ) )dt

= cos(d, ) cos(6,) L””
cos(@,)sin(8,)| ””
sin(8,) cos(8,) j

sin(8,)sin(é,) L sin(mat) cos(met) dt

cos(madt) sin(medt)dt +
cos(madt) cos(medt)dt —

sin(mat) sin(mat)dt -

The first and last integrals vanish because of the
orthogonality, and the middle two integrals vanish if
m # n, but if the voltage and current have the same
harmonic order then:

cos(8,,)sin(8, )J' cos? (med)dt = KT C05(‘92) sin(6,)
And |
sin(4,,) cos(é, )LHKT sin? (madt)dt = KTs ”(5; ) cos(6,)

Finally we have:
[ cos(mat +6,)sin(nat +8,)dt =0 it m# n
LHH cos(mat + 8. ) sin(ned + 6, )t

_ kT(sin(8,) cos(8,,) - cos(6,) sin(é,,))
2

_kTsin(g,-46.,)
2

if same harmonic order

Substituting the above results into the equation for
VAR:

Qj :VOIO(Sin(Ho)'l'%Sin(Hn—Hm)j And
g, = apsin(g, -4,)

T m sin(é,)
the same harmonic order.

if voltage and current have

4.5. Shifted VAR in the presence distortion  D;

Given: the quadrature-phase component of voltage V

is computed by 90 degrees shifting of the potential
function. The shifted definition of VAR with the voltage
and current functions given in section 4.0 above is
evaluated as follows:

Vo (t) = vt %})

= ﬁvo[s'n(w(t + 1)) + Bsin(mant +-) + Hm)j
2w 2w
=2V, (cos(at) + Bsin(mat + 6, +%)

_ 1 pr+kT _
Q”’Z_EJ; ledt_

AR jr+kT (cos(cut) + Bsin(mat + 6, +m—2ﬂ)j
Tk

T

(sin(27ft +6,) + asin(2mf t + 6,))dt

_ZVOIO T+KT .

=5t j cos(at) sin(at + 6,)dt +

2ol [ cos(at)sin(nat +8)dt+ @3
KT

Z\/O'Oﬂjr " sin(mat + 6, +—)sm(a1+6?)dt

Z\/O'OG'BJT “Tsin(mat + 6, +—)sm(na1+9)dt

Evaluating each of these integrals:

[ cos(at)sin(at +8,)dt = KT sn(@)

T+K
J. i cos(at)sin(nat + &,)dt = 0 Orthogonal

components
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T

THKT | mri, .
j sin(mad + 8, += ") sin(et +6,)dt = 0
Orthogonal components

[ sin(mat +8, +%)s‘n(nax +0 )t

T

-, sin(maI)COS(QmJ’mizﬂ) [sin(nax)cos(é’n) ]

7 m7z, | +cos(nat)sin(é,)

+cos(mat) sin(@,, + 7)
= co(d, + %) cos(6,)["" sin(ma) sin(mat)dt +
mir . T+KT
cos(fl, +—-)sin(8) j sin(mad) cos(mect)dt +
sn(@,, + %) cos(8,)[ """ cos(maut) sin(mat)ct +

. mrn, . T+KT
sin(@,, + 7)sm(éfn) I cos(mat) cos(meadt) dt
T
(44)
The middle two integrals vanish because of the

orthogonality, and the middle two integrals vanish if
m # n, but if the voltage and current have the same

harmonic order then:
mri +KT |
cos(8), +=-)os(6,) [ sin?(mat)dt
T

and
KT cos(@,, + m—z”) cos(d,)

2
sin(@. + ™ sin@ )" cos? (mad)dt
m 2 n r

KT sin(d,, + %”) sin(8,)
- 2

Finally we have:

T+KT m7i .
j sin(mat +6, +==)sin(nat +6,)dt =0 if

T

m#n

10

LHKT sin(mat +6, + %) sin(nat + 8, )dt

kT(cos(Hn) cos(8,, + %T) +sin(g,)sin(@,, + “;’T)]

2

KT cos(8, - 6, — ”;”)

= 45
> (45)

if same harmonic order

Substituting the above results into the equation for
VAR:

Qn/Z =Vo| o[Si n(eo) + a,[:’cos(&n - em _mzﬂ)] (46)
and

aBcos(8, -6, -

- 2
o sin(8;)

current have the same harmonic order.

if voltage and

4.6. Vector VA in the presence of distortion D,

Vector VA is a derived from the measurements of Watt
and VAR. The defining equation for vector VA given in
section 1.0 is:

s =P+ Q

If the harmonic order on the voltage axis is not equal
to harmonic order on the current axis, there are no
harmonic contributions in the active power in 4.2 or
any contribution in the reactive power for 4.4 or 4.5.
Therefore:

S =P/ +Q? and és =0

4.6.1.

(47)

(48)

Vector VA in the presence of distortion
D,: Integral VAR

If the harmonic order on the voltage axis is equal
to harmonic order on the current axis then
substituting the result derived in 4.2 and 4.4
above:

(cos(6,) +aBcos(d,, - 6,))°

R
+(sin(6'o> +Binga, —em)j

S. =V,
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4.6.2. Vector VA in the presence of distortion

D,: Shifted VAR

If the harmonic order on the voltage axis is equal
to harmonic order on the current axis then
substituting the result derived in 4.2 and 4.5

above:

(cos(6,) + aBcos(@,, - 6,))* +
S =V, , (50)
- (s:n(emaﬁcos(en -6, —”‘2’5)

4.7. RMS VAR in the presence of distortion D,

Computing RMS VAR with respect to the power
triangle yields:

A) If voltage and current have different harmonic
orders:

Qe =S4” ~P*

= \/V02|§(1+ ,32)(1+ az)—VOZI 2 cos*(6,)
Que =Vl o/1+ B2 +a% + a2 - c0s2(6),)
=Vl ,4/SiN?(6,) + B2 +a° +a? B

The error of the estimate would be:

bo.. =L+ (6B +a? + fra’) -1 (1)

B) If voltage and current have different harmonic
orders:

Qrms = SA2 - P2
21201+ g2 J1+ @) (52)
Vi 14 (cos(6,) + aBcos(6, - 6,))’

L+ B2 JL+a*)

- (cox(6,) +aBcos(6, - 6,))
l+a2+ﬂ2+a2ﬁ2
=V,l,.|-cos*(8,) - 2ap3 cos(d,) cos(, - b.,)

-a’pB*cos’*(6,-6,)

v sin’(8,) + a2 sin’(8, - 6,)
*\+a? + B - 2aBcos(6,) cos(d, - 6,)

:VOIO
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The error of the estimate would be:
a’B*sin’(6,-6,)
Emn = [L+0sC?(6,)| +a® + B2
- 2ap cos(g,)cos(8, - 6.,)

_, 63)

4.8. Power Factor in the presence of distortion D,
4.8.1. Power Factor in the presence of
distortion D;: Arithmetic VA

The Power factor can be derived from the
arithmetic VA and Watt.

A) If the harmonic order on the voltage axis is not
equal to harmonic order on the current axis, the
power factor becomes:

— PO — VO'OCOS(QO)
PFa s 2 2
Vol /lL+ g2+ a?) "
cos(6,) ‘

) Jl+ g2+ a?)

The error of the estimate would be:

1
& = -1 (55)
Ji+ g2+ a?)

B) If the harmonic order on the voltage and current
axis are equal, the power factor becomes:

_ Py _V,l,(cos(8,) +aBcos(8, - 6,))
PF,=—C=

S, VoloylL+ B2 J1+a?)

- COS(HO) + aﬂcos(en - em)

1/(1+ﬂ2 ﬂl+a25

The error of the estimate would be:

— 1+a185ec(00)cos(0n B 0m) _

S, = - ) 1 (57)
w/(1+,8 ﬂl+a )

4.8.2.

(56)

Power Factor in the presence of
distortion D;: Vector VA

The Power factor can be derived from the vector
VA and Watt. If the harmonic order on the voltage
axis is not equal to harmonic order on the current
axis, the power factor becomes:
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V)

PF = go = cos(f,) and fPFa =0, noerrorin
0
the estimate.

4.8.2.1. Power Factor in the presence of
distortion D 1: Vector VA, Integral VAR

If the harmonic order on the voltage and
current axis are equal, and Integral VAR was
used the power factor becomes:

PF_' :i
S

cos(ﬁHO) +apcos(d, - 6,)
(cos(8,) + aBcos(8,, - 6,))*

+[s‘n(eo) + P (e, —mj

(58)

m

The error of the estimate would be:

EPFQ
1+ afsec(é,) cos(d, - 6,)

(cos(8,) + aBcos(8,, - 6,))?

+[s‘n(eo) + P sne, —mj

m
(59)

4.8.2.2. Power Factor in the presence of
distortion D ;: Vector VA, Shifted VAR

If the harmonic order on the voltage and
current axis are equal, and Shifted VAR was
used the power factor becomes:
PFQ = L
S.
Cos(eo) + aﬁcos(en - em)
(cos(8,) +aBcos(8,, = 6,))*

+ (si n(8,) +aBcos(8, -6, —”;”)j

(60)

The error of the estimate would be:

- 1+aﬂ%(60)cos(6n _Hm) _1

(COS(HO) + aﬂ COS(Hm - Hn))z

+(sn@) +agooste, -4, "7 |

(61)

12

4.9. Conclusions regarding1 distortionD  ;: Am"
order on voltage and an " order on current

Just as in the case of zero-mean additive Gaussian
noise, a harmonic on the current or voltage axis will

force the measurement device to include the harmonic

magnitude in its RMS voltage and current
measurements.

It is recognized that a orthogonal relationship exists
between the fundamental and harmonic components:

7+KT R- j=k
[Tt f,0t = { .

r 0- j#k
If the harmonic order on the voltage and current axis
are not equal, the resulting metric estimates are
analogous to that obtain for zero-mean additive
Gaussian noise.

If the harmonic order on the voltage and current axis
are equal, then a harmonic error component will
appear on the active power estimate (watt), and the
reactive power estimate (VAR).

5. Conclusion

VAR Algorithm Comparison:
* VAR RMS - Contains noise distortion error.
* VAR Integral — Contains error due to
attenuated voltage and current harmonic

1
contribution of —.
kT

* VAR Shifted — Contains error due even
harmonic phase distortion whereas the even
harmonic may not contribute to the overall
calculation.

PF Algorithm Comparison:
 PF with VAR RMS - Contains error due to
over estimated VAR content.
e PF with Integral VAR — Contains error from
under estimated VAR content due to
Attenuated voltage and current harmonic

1
contribution of —.
kKT

* PF With Shifted VAR - Contains error from
under estimated VAR content due to even
harmonic phase distortion.
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VA Algorithm Comparison:
» Arithmetic VA - Contains noise distortion
error.
e Vector VA with Integral VAR — Contains
error from under estimated VAR content due
to attenuated voltage and current harmonic

1
contribution of —
KT

* Vector VA with Shifted VAR - Contains error
from under estimated VAR content due to
even harmonic phase distortion.

As shown above, each independent algorithm has
benefits that vary depending on the quality of voltage
and current being supplied and measured. It is also
evident; when measurements via RMS methods are
used to derive VA and VAR they have inherent

€rror included that gets compiled into associated
derived measurements.

From an algorithm error aspect the most accurate
approach involves algorithms that derive its
measurement using shifted integration in order to
eliminate the non-orthogonal noise contribution.
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Additionally, it shows that if Watt and VAR can be
derived independently the error can be reduced on all
associated derived measurements.

Unfortunately the measurement approaches are not
consistent between devices and only when the
methods are defined can the device accuracy be
compared to a reference.
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