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Abstract : The intended audiences are ISO 17025 
Calibration Laboratories, ISO 9001 Meter 
Manufacturers, Electric utilities, and Organizations 
involved with electricity measurement.  Participants 
will gain insights in recognizing the need to better 
define methods of energy measurement in order to 
have a better understanding on why errors may be 
present during power or energy calibration of 
equipment and how various error sources effect 
measurements.   

 
This paper will show the possible differences and 

potential influences associated with industry accepted 
measurement algorithms associated to electricity 
measurement.  Radian Research is a world leading 
manufacturer of primary energy reference standards 
for electric power and has done extensive studies to 
help ensure that accurate testing of electrical power 
and energy measurement is maintained over a broad 
range of testing conditions. 
 
Key words: Energy Measurement, Measurement 
Algorithms, Error Influence, Harmonic Distortion. 

1. Introduction 
Establishing how a given electricity measurement 

device measures active, reactive, and apparent 
energy is of paramount concern to electric utility 
companies, manufacturers of energy meters, energy-
reference-standards, and energy meter test systems.  
Although an energy meter can be identified as 
belonging to a particular accuracy class, it is not 
generally given under what real-world ambient load 
conditions the measurements of a meter are 
applicable. With the introduction of digital technology 
and digital measurement techniques, there arises the 
introduction of a purely mathematical abstraction of 
the energy measurement process within modern 

meters. Therefore, it is no longer possible to predict 
how a meter will respond by only examining the 
analog component; the digital component is a key 
element within the measurement procedure as well 
(which is well hidden from everyone but the designer). 
It can be shown that different meters tend to contain 
different solutions to the energy measurement 
equations. Various meters can be grouped together, 
for they produce measurements that are identical to 
one another under identical environments conditions. 
While others form separate groups, each group 
establishing an equivalent accuracy class of 
measurements among themselves under the same 
environmental conditions.  Establishing a procedure or 
method to determine where a given meter fits into a 
“reference set of solutions to the energy measurement 
equations” can be instrumental to meter 
manufacturers in establishing under what 
environmental conditions the accuracy of their meter 
holds good. It should be clearly noted that the goal of 
this paper is not to be critical of the measurement 
algorithm used – much progress has been made over 
the years in the advancement of electronic energy 
meter performance. Instead, the goal is to 
demonstrate the need to define the measurement 
approach in order to properly compare its performance 
to a reference.  Unfortunately the measurement 
approaches are not consistent between devices and 
only when the methods are defined can the device 
accuracy be compared to a reference. 
 

The purpose of this study is to investigate the error 
behavior of the set of classic energy metrics in the 
presence of particular distortions. The set of metrics 
under investigation have the forms:  

• RMS Voltage :    

 ∫
+

=
kT

dtv
kT

V
τ

τ
21

  (1) 
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• RMS Voltage Squared: 

 ∫
+

=
kT

dtv
kT

V
τ

τ
22 1

    (2)  

• RMS Current:    

 ∫
+

=
kT

dti
kT

I
τ

τ
21

    (3) 

• RMS Current Squared: 

 ∫
+

=
kT

dti
kT

I
τ

τ
22 1

     (4)  

• Arithmetic Apparent Power (VA): 
 VIS A =                      (5) 

• Vector Apparent Power (VA):

 22 QPS +=→        (6) 

• Active Power (W):  

 ∫
+

=
kT

vidt
kT

P
τ

τ

1
        (7) 

• Integral Reactive Power (VAR):

 ∫
+

⊥∫
=

kT
idtv

kT
Q

τ

τ

1
 where:   

∫=⊥ dtvv 2ω                            (8) 

• Shifted Reactive Power (VAR):         

∫
+

⊥=
kT

idtv
kT

Q
τ

τπ
1

2/  

where: )
2

(
ω
π+=⊥ tvv             (9) 

• RMS Reactive Power (VAR): 

 22 PSQrms −=       (10) 

• Power Factor:   

 
S

P
PF =                      (11) 

Where: T  is the fundamental Period
f

T
1= , f  is 

the fundamental frequency 
             τ  is integration start time. 
             ,...3,2,1=k  the number of cycles 
integration is taken over. 
             )(tv  the in-phase voltage 

 )(tv⊥  the quadrature-phase voltage 

             )(ti  the current. 

                   fπω 2=  
 

This study introduces a particular type of distortion and 
ask the question: due to the presence of a particular 
distortion D, and given a set of metrics µ, what are 
their expectations (their predicted value in the 
presence of a given distortion D), i.e. E(µ, | D).  
In addition, what are the errors of the metrics relative 
to pure sinusoidal conditions (distortion free).   
 
This study investigates three distortion prototypes. 

• D0: Zero-mean additive Gaussian noise on the 
voltage and current axes. 

• D1: An mth order harmonic on the Voltage axis 
and an nth order harmonic on Current axis 
were the orders can be the same or differ. 

2. Power Measurements Derived from a 
Measurement Basis 
 
Before proceeding, a brief analysis of power estimates 
will be investigated that assumes no a priori 
knowledge concerning the nature of the distortion on 
the voltage and current axes. This is accomplished by 
measuring a set of fundamental metrics and then 
deriving others from this measurement basis. After the 
additional estimates are derived, their errors can be 
directly computed. 
 
Let the following define the measurement basis: 

Measured RMS Voltage Squared: 2V  

Measured RMS Current Squared:  2I  
Measured Phase Angle:  θ     

 
And their ground truth counterparts:  

True RMS Voltage: 2
0V  

True RMS Current:  2
0I  

True Phase Angle:    
0θ  

 
We take as the error equations for the measurement 
basis the following: 
 

2
0

2
0

2

2

V

VV
V

−
=ξ

    And    
( )212

0
2

v
VV ξ+=

      (12) 

2
0

2
0

2

2

I

II
I

−
=ξ

     And    
( )212

0
2

I
II ξ+=

   (13) 

π
θθξθ 2

o−
=

         And   θπξθθ 2+= o       (14) 
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2V
ξ

, 2I
ξ

 , θξ
, are the normalized errors for our 

measurement basis. 
 

Next, the expected estimates for: V , I , S , P , Q , 
PF  will be derived based upon this measurement 
basis. This initial analysis assumes sinusoidal forms 
for these metrics, which is all that can be managed 
with the measurement basis given. This will be treated 
as starting point for the rest of the analysis. As the 
analysis progress more general non-sinusoidal forms 
will be introduced. Useful information about the error 
behavior of the listed metrics will be illustrated for this 
initial case.  

2.1. RMS Voltage and RMS Current  
 
RMS voltage and current is simply derived form the 

square roots of the  2V  and 2I : 

210 v
VV ξ+=    and 11 2

0

0 −+=
−

=
vV V

VV ξξ      

210 I
II ξ+=    and  11 2

0

0 −+=
−

=
II I

II ξξ    

 

2.2. VA based upon VIS =  

 
VA is derived from the RMS voltage and current 
computed in section 2.1 above: 

( )( )22 11
IvooIVVIS ξξ ++==  and the VA error is 

then determined to be: 
 

( )( )
oo

ooIvoo

oo

oo
S

IV

IVIV

IV

IVVI

S

SS

−++
=

−
=

−
=

22 11

0

0

ξξ

ξ

( )( ) 111 22 −++=
Iv

ξξ  (15) 

2.3. Watt based upon )cos(θVIP =  

 
The Watt measurement is expressed as: 

( )( ) )2cos(11

)cos(

22 θπξθξξ
θ

+++=

=

oIvoo IV

VIP
        (16) 

 
The error equation for Watt is expressed as follows: 

)cos(

)cos()cos(

0

0

ooo

ooo
P AV

AVVI

P

PP

θ
θθξ −

=
−

=       

 

( )( )
)cos(

)cos()2cos(11 22

ooo

ooooIvoo

IV

IVIV

θ
θπξθξξ θ −+++

=  

       

 

( )( )
)cos(

)cos()2cos(11 22

o

ooIv

θ
θπξθξξ θ −+++

=  

        
 

( )( )( )
=

−−++
=

)cos(

)cos()2sin()sin()2cos()cos(11

o

oooIv

θ
θπξθπξθξξ θθ  

 

 ( )( ) 1
)2sin()tan(

)2cos(
11 22 −









−
++=

θ

θ

πξθ
πξ

ξξξ
o

IvP
 (17) 

2.4. VAR based upon )sin(θVIQ =  

 
The VAR measurement is expressed as: 

( )( ) )2sin(11)sin( 22 θπξθξξθ +++== oIvoo IVVIQ  

 
The error equation for VAR is expressed as follows: 

)sin(

)sin()sin(

ooo

ooormsrms
VAR AV

AVAV

θ
θθξ −

=  

        
 

( )( )
)sin(

)sin()2sin(11 22

ooo

ooooAvoo

AV

AVAV

θ
θπξθξξ θ −+++

=  

             
( )( )

)sin(

)sin()2sin(11

o

ooAv

θ
θπξθξξ θ −+++

= \ 

         
( )( )

=
−









+
++

=
)sin(

)sin(
)2sin()cos(

)2cos()sin(
11

o

o
o

o
Av

θ

θ
πξθ

πξθ
ξξ

θ

θ

 

 ( )( ) 1
)2sin()cot(

)2cos(
11 22 −









+
++=

θ

θ

πξθ
πξ

ξξξ
o

AvVAR
 (18) 
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2.5. Power Factor  
 
The power factor follows from its definition: 

( )( )
( )( )

)2cos(

11

)2cos(11

22

22

θ

θ

πξθ

ξξ

πξθξξ

+=

++

+++
==

o

Ivoo

oIvoo

IV

IV

S

P
PF  (19) 

 
 

The corresponding error for power factor is: 

1)2sin()tan()2cos(

)cos(

)cos()2cos(

−−=

−+=

θθ

θ

πξθπξ
θ

θπξθξ

o

o

oo
PF

           (20) 

 

2.6. Conclusion regarding measurement basis 
 
It is important to keep in mind that all the metrics 
derived from the measurement basis inherit the errors 
from the measurements basis. 

3. D0: Zero-mean additive Gaussian noise on the 
voltage and current axes  
 
Assume the voltage and current are corrupted by a 
zero mean Gaussian noise distribution. The voltage 
and current signals as seen by the measurement 
device are defined as follows: 
 

)()()(~ ttvtv vη+=    and   )()()(
~

ttiti iη+=  

 

Where: )(~ tv  and )(
~

ti  are the potential and current 
as seen by measurement device. 
           )(tv  and )(ti  are the true potential and 

current.  
          )(tvη  and )(tiη  are the zero mean additive 

white noise sources. 
 

3.1. RMS voltage and RMS current in the presence 
distortion D0 
 
Let V0 and I0 represent the true RMS voltage and 
RMS current integrated over cycle T: 

∫
+

=
kT

dtv
kT

V
τ

τ
2

0

1
 and ∫

+
=

kT
dti

kT
I

τ

τ
2

0

1
 

 

The variance of the noise distributions can be defined 
relative to the true RMS voltage and RMS current 
squared by: 

 2221
Vo

kT

v Vdt
kT

ση
τ

τ
=∫

+
 and 2221

Io

kT

i Idt
kT

ση
τ

τ
=∫

+
  

 
The RMS voltage squared as seen by the 
measurement device is given by: 

kT

dtdtv

kT

dtdtvdtv

kT

dtv

kT

dtv

kT

v

kT

kT

v

kT

v

kT

kT

v

kT

∫∫

∫∫∫

∫∫

++

+++

++

+
=

++
=

+
=

τ

τ

τ

τ

τ

τ

τ

τ

τ

τ

τ

τ

τ

τ

η

ηη

η

22

22

22

2

)(~

  (21) 

Since )(tvη  is zero mean and independent of v, then: 

0=∫
+kT

vdtv
τ

τ
η  . The expectation of this product 

integrated over a period T: 

0)()()( == vv EvEvE ηη . 

 
The measure RMS Voltage Squared will be:  

( )222222 1 VoVoo VVVV σσ +=+=  and 

( ) 2
2

222

2

2
0

2 1
2 V

o

oVo

o
V V

VV

V

VV σσξ =
−+

=
−

=  (22) 

 
Integrating similarly, the RMS Current Squared 
measurement will be: 

( )222222 1 IoIoo IIII σσ +=+=  and 

( ) 2
2

222

2

2
0

2 1
2 I

o

oIo

o
I I

II

I

II σσξ =
−+

=
−

=  (23) 

 
The measure RMS Voltage and Current would be the 

square roots of 2V  and 2I : 

2
0 1 VVV σ+=    and 11 2

0

0 −+=
−

= VV V

VV σξ      

2
0 1 III σ+=  and  11 2

0

0 −+=
−

= II I

II σξ    

3.2. Arithmetic VA in the presence distortion D0 
 
The arithmetic VA is determined from the RMS voltage 
and RMS current found in section 3.1: 
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( )( )22
00 11 IVA IVS σσ ++=    and 

( )( ) 111 22 −++= IVSA
σσξ    (24) 

3.3. Vector VA in the presence of distortion  D0 

 
Vector VA is a derived from the measurements of Watt 
and VAR. The defining equation for vector VA given in 
section 1.0 is: 

22 QPS +=→     (25) 

 
Substituting the measurements derived above: 

2
0

2
0 QPS +=→  and 0=

→Sξ  

 
Note: Vector VA has no inherent error, whereas 
Arithmetic VA has an inherent error by the virtue of 
how it is derived. The Arithmetic VA can not avoid the 
contribution of the noise power density due to RMS 
voltage and current.  

3.4. Watt in the presence distortion D0 
 
The integral definition of Watt with the voltage and 
current functions given in section 3.0 above is 
evaluated as follows: 
 

( )( )∫∫
++

++==
kT

iv

kT
dtttittv

kT
dtiv

kT
P

τ

τ

τ

τ
ηη )()()()(

1~~1

 

∫
∫∫∫∫ +

++++

=
+++

=
kT

kT

iv

kT

v

kT

i

kT

vidt
kTkT

dttdidtvvidt τ

τ

τ

τ

τ

τ

τ

τ

τ

τ
ηηηη 1

 
)cos( 000 θIVP =      (26) 

 
And the Watt error would be: 0=Wattξ . 

For the ideal integrator, the Gaussian noise totally 
integrates out of the equation. 
 
Note: the noise distributions are zero mean and 
independent from on another, therefore: 
  0)()()( == AVAV EVEVE ηη ,  

  0)()()( == VV EAEAE ηη  

  0)()()( == AVAV EEE ηηηη  

3.5. Integral and Shifted VAR in the presence 
distortion D0 
 
Given: the quadrature-phase component of voltage ⊥v~  
is computed by integration or phase shifting. The 
integral or shifted definition of VAR with the voltage 
and current functions given in section 3.0 above is 
evaluated as follows: 
 

( )( )∫∫
+

⊥

+

⊥∫
++==

kT

Av

kT
dttitittv

kT
dtiv

kT
Q

τ

τ

τ

τ
η )()()()(

1~~1

 
     
 

∫
∫∫∫∫ +

⊥

+++

⊥

+

⊥
=

+++
=

kT

kT

iv

kT

v

kT

i

kT

idtv
kTkT

dttdidtvidtv τ

τ

τ

τ

τ

τ

τ

τ

τ

τ
ηηηη 1

 
)sin( 000 θIVQ =

∫
    (27) 

 
And the VAR error would be 0=

∫Qξ  

For the ideal integrator, the Gaussian noise totally 
integrates out of the equation. 
Note: the noise distributions are zero mean and 
independent from on another, therefore: 

0)()()( == ⊥⊥ AA EVEVE ηη ,  

0)()()( == VV EAEAE ηη  

0)()()( == AVAV EEE ηηηη  

3.6. RMS VAR in the presence of distortion D0 
 
Computing RMS VAR with respect to the power 
triangle yields: 

( )( ) )(cos11 0
22

0
2

0
222

0
2

0

22

θσσ IVIV

PSQ

IV

Arms

−++=

−=

( )( )
2222

0
2

00

0
222

00

)(sin

)(cos11

IVIv

IVrms

IV

IVQ

σσσσθ

θσσ

+++=

−++=
  (28) 

( ) 1)(csc1 2222
0

2 −+++= IVIVrmsQ σσσσθξ  (29) 

 
Note: Since Arithmetic VA has an error component 
related to the noise power density, then RMS VAR will 
inherit this error. 



Radian Research, Inc.   
________________________________________________________________________ 
 
 

 6 

3.7. Power Factor in the presence of distortion  D0 

3.7.1. Power Factor in the presence of 
distortion D 0: Arithmetic VA 

If the power factor is derived using Arithmetic VA 
the expected estimate would be: 

( )( )

( )( )22

0

22
00

0000

11

)cos(

11

)cos(

IV

IVA
A

IV

IV

S

P
PF

σσ
θ

σσ
θ

++
=

++
==

 (30) 

 
The error of the estimate would be: 

( )( ) 1
11

1
22

−
++

=
IV

PF
σσ

ξ   (31) 

3.7.2. Power Factor in the presence of 
distortion D 0: Vector VA 

If the power factor is derived using Vector VA the 
expected estimate would be: 

)cos( 0
0

0 θ==→ S

P
PF  and 0=

→PFξ  , no error in 

the estimate. 

3.8. Conclusions regarding distortion D0: Zero-
mean additive Gaussian noise 
 
It is clear for the case of zero-mean additive Gaussian 
noise, a measurement device can not avoid including 
noise density into RMS Voltage and RMS Current 
measurements.  
 
Secondly, if the integration does not involve the noise 
density, i.e. the noise is NOT squared in the 
measurement process, and the noise is zero mean, 
the noise integration will vanish. This is true in the 
case of Watt, Integral and Shifted VAR. Since the 
noise on the voltage and current axes are 
independent. Integration is an optimal estimator for 
these two metrics in the presence of zero-mean 
additive Gaussian noise. 
 
Thus, metrics derived from RMS voltage and RMS 
current inherits noise power density components, 
thereby adding error to these derived metrics. We see 
that arithmetic VA, RMS VAR, and arithmetic PF, 
inherit errors from RMS Voltage and RMS Current. 
And since vector VA and PF are derived from Watt 

and Integral or Shifted VAR, they have no inherent 
error.  

4. D1: A m th order on voltage and a n th  order on 
current – harmonics on all axes  
 
Assume the voltage axis is corrupted by a harmonic 
component of order j and the current axis is corrupted 
by a harmonic component of order k. The voltage and 
current signals as seen by the measurement device 
are defined as follows: 
 

( ))sin()sin(2)( 0 mtmtVtv θωβω ++=    And   

( ))sin()sin(2)( 000 ntntIti θωαθω +++=  

 
Where: )(tv  and )(ti  are the current and potential as 

seen by the measurement device 
     0V  and 0I  are the expected RMS current and 

potential.        
            nm,  the harmonic number for the potential 

and current axes respectively 
            fπω 2=  where f  is the fundamental 
frequency. 

            2100β=VTHD  or 100/VTHD=β  

           2100α=ITHD  or 100/ITHD=α  

4.1. RMS voltage and current in the presence 
distortion D1 
 

Note:  ))22cos(1(
2

1
)(sin 00

2 θωθω +−=+ tt  

     ))22cos(1(
2

1
)(cos 00

2 θωθω ++=+ tt  

And 

dttdtt
kTkT

))22cos(1(
2

1
)(sin 00

2
∫∫

++
+−=+

τ

τ

τ

τ
θωθω

))22sin(
2

1
(

2

1

))22cos((
2

1

0

0

θω
ω

θω

τ

τ

τ

τ

τ

τ

+−=

+−=

+

++

∫∫

tt

dttdt

kT

kTkT

2
)22sin(

2

1

)222sin(
2

1
(

2

1

0

0
kT

t

ktkT

=


























 +−−








 ++−+
=

θω
ω

τ

πθω
ω

τ
 (32) 
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And 

dttdtt
kTkT

))22cos(1(
2

1
)(cos 00

2
∫∫

++
++=+

τ

τ

τ

τ
θωθω

))22sin(
2

1
(

2

1

))22cos((
2

1

0

0

θω
ω

θω

τ

τ

τ

τ

τ

τ

++=

++=

+

++

∫∫

tt

dttdt

kT

kTkT

 

2
)22sin(

2

1

)222sin(
2

1
(

2

1

0

0
kT

t

ktkT

=


























 ++−








 ++++
=

θω
ω

τ

πθω
ω

τ
 (33) 

 
The RMS current squared is given by: 

∫∫
+

+++=
kT

n

T

o
dttnt

kT

I
dti

kT

τ

τ
θωαθω 2

0
02 ))sin()(sin(

21  





















++

+++

+

=

∫

∫

∫

+

+

+

kT

n

kT

n

kT

dttn

dttnt

dtt

kT

I

τ

τ

τ

τ

τ

τ

θωα

θωθωα

θω

)(sin

)sin()sin(2

)(sin

2

22

0

0
2

2
0

  (34) 

Evaluating each of the three integrals above, we have: 

1): 2
00

2
2
0 )(sin

2
Idtt

kT

I kT
=+∫

+τ

τ
θω  

 
Because )sin( tω  , )cos( tω  , )sin( tnω , and 

)cos( tnω  are mutually orthogonal: 

∫
+

=
kT

dttnt
τ

τ
ωω 0)sin()sin(  

∫
+

=
kT

dttnt
τ

τ
ωω 0)cos()sin(  

∫
+

=
kT

dttnt
τ

τ
ωω 0)sin()cos(  

∫
+

=
kT

dttnt
τ

τ
ωω 0)cos()cos(  

∫
+

++
kT

n dttnt
τ

τ
θωθω )sin()sin( 0  

( )
( )∫

+

+
+

=
kT

nn dttntn

ttτ

τ θωθω
θωθω

)sin()cos()cos()sin(

)sin()cos()cos()sin( 00  

 
Multiplying this out we have: 

+= ∫
+kT

n dttnt
τ

τ
ωωθθ )sin()sin()cos()cos( 0  

+∫
+kT

k dttnt
τ

τ
ωωθθ )cos()sin()sin()cos( 0  

   +∫
+kT

n dttnt
τ

τ
ωωθθ )sin()cos()cos()sin( 0  

   0)cos()cos()sin()sin( 0 =∫
+kT

n dttnt
τ

τ
ωωθθ  

 
Therefore 2): 

0)sin()sin(
4

0

2
0 =++∫

+kT

n dttnt
kT

I τ

τ
θωθωα

   (35) 

 

and finally 3): 22
0

2
22

0 )(sin
2 αθωα τ

τ
Idttn

kT

I kT

n =+∫
+

 

)1( 22
0

2 aII +=  and 

( ) 2
2

222

2

2
0

2 1
2 ααξ =

−+
=

−
=

o

oo

o
I I

II

I

II
  (36) 

 
 
Based on the analysis above for RMS voltage squared 
would be: 

)1(
1 22

0
22 β

τ

τ
+== ∫

+
Vdtv

kT
V

kT
 And 

( ) 2
2

222

2

2
0

2 1
2 ββξ =

−+
=

−
=

o

oo

o
V V

VV

V

VV
 (37) 

 
The measure RMS Voltage and Current would be the 

square roots of 2V  and 2I : 

2
0 1 β+= VV    and 11 2

0

0 −+=
−

= βξ
V

VV
V      

2
0 1 α+= II  and  11 2

0

0 −+=
−

= αξ
I

II
I

   

4.2. Watt in the presence distortion D1 
 
The integral definition of Watt with the voltage and 
current functions given in section 1.0 above is 
evaluated as follows: 

∫
+

=
kT

vidt
kT

P
τ

τ

1

( )
( )∫

+

+++
++

=
kT

n

m

dttnt

tmt

kT

IV τ

τ θωαθω
θωβω

)sin()sin(

)sin()sin(2

0

00  

 

++= ∫
+kT

dttt
kT

IV τ

τ
θωω )sin()sin(

2
0

00  

++∫
+kT

n dttnt
kT

IV τ

τ
θωωα

)sin()sin(
2 00  (38) 
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+++∫
+kT

m dtttm
kT

IV τ

τ
θωθωβ

)sin()sin(
2

0
00  

∫
+

++
kT

mm dttntm
kT

IV τ

τ
θωθωαβ

)sin()sin(
2 00  

 
Evaluating each of these integrals: 

2

)cos(
)sin()sin( 0

0

θθωω
τ

τ

kT
dttt

kT
=+∫

+
 

0)sin()sin( =+∫
+kT

n dttnt
τ

τ
θωω   

Orthogonal components 
 

0)sin()sin( 0 =++∫
+kT

m dtttm
τ

τ
θωθω   

Orthogonal components 
 

∫
+

++
kT

mm dttntm
τ

τ
θωθω )sin()sin(  

∫
+










+








+
=

kT

n

n

m

m dt
tn

tn

tm

tmτ

τ θω
θω

θω
θω

)sin()cos(

)cos()sin(

)sin()cos(

)cos()sin(

+= ∫
+kT

nm dttntm
τ

τ
ωωθθ )sin()sin()cos()cos(  

+∫
+kT

nm dttntm
τ

τ
ωωθθ )cos()sin()sin()cos(  (39) 

+∫
+T

nm dttntm
τ

τ
ωωθθ )sin()cos()cos()sin(  

∫
+kT

nm dttntm
τ

τ
ωωθθ )cos()cos()sin()sin(  

 
The middle two integrals vanish because of the 
orthogonality, and the first and last integrals vanish if 

nm ≠ , but if the voltage and current have the same 
harmonic order then: 

2

)cos()cos(
)(sin)cos()cos( 2 nm

kT

nm

kT
dttm

θθωθθ
τ

τ
=∫

+

 And 

2

)sin()sin(
)(cos)sin()sin( 2 nm

kT

nm

kT
dttm

θθωθθ
τ

τ
=∫

+

 
Finally we have: 

0)sin()sin( =++∫
+kT

nm dttntm
τ

τ
θωθω  if nm ≠  

( )
2

)sin()sin()cos()cos(

)sin()sin(

nmnm

kT

nm

kT

dttktm

θθθθ

θωθω
τ

τ

+
=

++∫
+

  (40) 

2

)cos( mnkT θθ −
= , if m, n have the same harmonic 

order 
 
Substituting the above results into the equation for 
Watt: 

( ))cos()cos( 000 mnaIVP θθβθ −+=   And 

)cos(

)cos(

0θ
θθβξ mn

P

a −
=  if voltage and current have 

the same harmonic order. 

4.3. Arithmetic VA in the presence distortion D1 
 
The arithmetic VA is determined from the RMS voltage 
and RMS current found in section 2.1: 

( )( )22
00 11 aIVSA ++= β    And 

( )( ) 111 22 −++= a
AS βξ    (41) 

 

4.4. Integral VAR in the presence distortion D1 
 
Given: the quadrature-phase component of voltage ⊥v  
is computed by integration. The integral definition of 
VAR with the voltage and current functions given in 
section 4.0 above is evaluated as follows: 

( )
( )∫∫

∫
++=

++=⊥

dttmdttV

dttmtVtv

m

m

)sin()sin(2

)sin()sin(2)(

0

0

θωβωω

θωβωω
 








 ++=








 ++=

)cos()cos(2

)cos()cos(
1

2

0

0

m

m

tm
m

tV

tm
m

tV

θωβω

θω
ω

βω
ω

ω
 

 == ∫
+

⊥∫

kT
idtv

kT
Q

τ

τ

1
 

( )
∫

+

+++








 ++
=

kT

n

m

dttnftf

tm
m

t

kT

IV τ

τ
θπαθπ

θωβω

)2sin()2sin(

)cos()cos(2

000

00  

 

++= ∫
+kT

dttt
kT

IV τ

τ
θωω )sin()cos(

2
0

00  

++∫
+kT

n dttnt
kT

IV τ

τ
θωωα

)sin()cos(
2 00  
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+++∫
+kT

m dtttm
mkT

IV τ

τ
θωθωβ

)sin()cos(
2

0
00  (42) 

∫
+

++
kT

nm dttntm
mkT

IV τ

τ
θωθωαβ

)sin()cos(
2 00  

 
Evaluating each of these integrals: 

2

)sin(
)sin()cos( 0

0

θθωω
τ

τ

kT
dttt

kT
=+∫

+
 

0)sin()cos( =+∫
+kT

n dttnt
τ

τ
θωω  Orthogonal 

components 

0)sin()cos( 0 =++∫
+kT

m dtttm
τ

τ
θωθω  Orthogonal 

components 
 

∫
+

++
kT

nm dttntm
τ

τ
θωθω )sin()cos(  

( )
( )∫

+

+
−

=
kT

nn

mm

dttntn

tmtmτ

τ θωθω
θωθω

)sin()cos()cos()sin(

)sin()sin()cos()cos(

+= ∫
+kT

nm dttmtm
τ

τ
ωωθθ )sin()cos()cos()cos(  

−∫
+kT

nm dttmtm
τ

τ
ωωθθ )cos()cos()sin()cos(  

−∫
+kT

nm dttmtm
τ

τ
ωωθθ )sin()sin()cos()sin(  

∫
+kT

nm dttmtm
τ

τ
ωωθθ )cos()sin()sin()sin(  

 
The first and last integrals vanish because of the 
orthogonality, and the middle two integrals vanish if 

nm ≠ , but if the voltage and current have the same 
harmonic order then: 

2

)sin()cos(
)(cos)sin()cos( 2 nm

kT

nm

kT
dttm

θθωθθ
τ

τ
=∫

+

 And 

2

)cos()sin(
)(sin)cos()sin( 2 nm

kT

nm

kT
dttm

θθωθθ
τ

τ
=∫

+

Finally we have: 

0)sin()cos( =++∫
+kT

nm dttntm
τ

τ
θωθω  if nm ≠  

( )
2

)sin()cos()cos()sin(

)sin()cos(

mnmn

kT

nm

kT

dttntm

θθθθ

θωθω
τ

τ

−
=

++∫
+

  

2

)sin( mnkT θθ −
=  if same harmonic order 

 
Substituting the above results into the equation for 
VAR: 








 −+=
∫

)sin()sin( 000 mnm

a
IVQ θθβθ   And 

)sin(

)sin(

0θ
θθβξ mn

Q m

a −
=

∫
 if voltage and current have 

the same harmonic order. 

4.5. Shifted VAR in the presence distortion D1 

 
Given: the quadrature-phase component of voltage ⊥v  
is computed by 90 degrees shifting of the potential 
function. The shifted definition of VAR with the voltage 
and current functions given in section 4.0 above is 
evaluated as follows: 








 ++++=

+=⊥

))
2

(sin())
2

(sin(2

)
2

()(

0 mtmtV

tvtv

θ
ω
πωβ

ω
πω

ω
π

( ) )
2

sin(cos(2 0

πθωβω m
tmtV m +++=

== ∫
+

⊥

kT
idtv

kT
Q

τ

τπ
1

2/  

( )
∫

+

+++








 +++
=

kT

n

m

dttnftf

m
tmt

kT

IV τ

τ
θπαθπ

πθωβω

)2sin()2sin(

)
2

sin()cos(2

000

00

++= ∫
+kT

dttt
kT

IV τ

τ
θωω )sin()cos(

2
0

00  

++∫
+kT

n dttnt
kT

IV τ

τ
θωωα

)sin()cos(
2 00  (43) 

++++∫
+kT

m dtt
m

tm
kT

IV τ

τ
θωπθωβ

)sin()
2

sin(
2

0
00  

∫
+

+++
kT

nm dttn
m

tm
kT

IV τ

τ
θωπθωαβ

)sin()
2

sin(
2 00

 
Evaluating each of these integrals: 

2

)sin(
)sin()cos( 0

0

θθωω
τ

τ

kT
dttt

kT
=+∫

+
 

0)sin()cos( =+∫
+kT

n dttnt
τ

τ
θωω  Orthogonal 

components 
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0)sin()
2

sin( 0 =+++∫
+kT

m dtt
m

tm
τ

τ
θωπθω  

Orthogonal components 

∫
+

+++
kT

nm dttn
m

tm
τ

τ
θωπθω )sin()

2
sin(  

∫
+










+


















++

+
=

kT

n

n

m

m

dt
tn

tn

m
tm

m
tm

τ

τ θω
θω

πθω

πθω

)sin()cos(

)cos()sin(

)
2

sin()cos(

)
2

cos()sin(

++= ∫
+kT

nm dttmtm
m τ

τ
ωωθπθ )sin()sin()cos()

2
cos(  

++ ∫
+kT

nm dttmtm
m τ

τ
ωωθπθ )cos()sin()sin()

2
cos(  

++ ∫
+kT

nm dttmtm
m τ

τ
ωωθπθ )sin()cos()cos()

2
sin(  

∫
+

+
kT

nm dttmtm
m τ

τ
ωωθπθ )cos()cos()sin()

2
sin(  

      (44)
  
The middle two integrals vanish because of the 
orthogonality, and the middle two integrals vanish if 

nm ≠ , but if the voltage and current have the same 
harmonic order then: 

2

)cos()
2

cos(

)(sin)cos()
2

cos( 2

nm

kT

nm

m
kT

dttm
m

θπθ

ωθπθ
τ

τ

+
=

+ ∫
+

 and 

2

)sin()
2

sin(

)(cos)sin()
2

sin( 2

nm

kT

nm

m
kT

dttm
m

θπθ

ωθπθ
τ

τ

+
=

+ ∫
+

 

 
Finally we have: 

0)sin()
2

sin( =+++∫
+kT

nm dttn
m

tm
τ

τ
θωπθω  if 

nm ≠  

2

)
2

sin()sin()
2

cos()cos(

)sin()
2

sin(








 +++
=

+++∫
+

πθθπθθ

θωπθω
τ

τ

mm
kT

dttn
m

tm

mnmn

kT

nm

2

)
2

cos(
πθθ m

kT mn −−
=     (45) 

 
if same harmonic order 
 
Substituting the above results into the equation for 
VAR: 








 −−+= )
2

cos()sin( 0002/

πθθβθπ
m

aIVQ mn
  (46)  

and 

)sin(

)
2

cos(

0
2/ θ

πθθβ
ξ

π

m
a mn

Q

−−
=  if voltage and 

current have the same harmonic order. 
 

4.6. Vector VA in the presence of distortion  D1 

 
Vector VA is a derived from the measurements of Watt 
and VAR. The defining equation for vector VA given in 
section 1.0 is: 

22 QPS +=→     (47) 

 
If the harmonic order on the voltage axis is not equal 
to harmonic order on the current axis, there are no 
harmonic contributions in the active power in 4.2 or 
any contribution in the reactive power for 4.4 or 4.5. 
Therefore: 

2
0

2
0 QPS +=→  and 0=

→Sξ    (48) 

4.6.1. Vector VA in the presence of distortion 
D1: Integral VAR 

 
If the harmonic order on the voltage axis is equal 
to harmonic order on the current axis then 
substituting the result derived in 4.2 and 4.4 
above: 

( )
2

0

2
0

00
)sin()sin(

)cos()cos(








 −++

−+
=→

mn

nm

m

a

a

IVS
θθβθ

θθβθ
  (49) 
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4.6.2. Vector VA in the presence of distortion 
D1: Shifted VAR 

 
If the harmonic order on the voltage axis is equal 
to harmonic order on the current axis then 
substituting the result derived in 4.2 and 4.5 
above: 

( )
2

0

2
0

00
)

2
cos()sin(

)cos()cos(








 −−+

+−+
=→ πθθβθ

θθβθ

m
a

a

IVS
mn

nm
 (50) 

4.7. RMS VAR in the presence of distortion D1 
 
Computing RMS VAR with respect to the power 
triangle yields: 
 
A) If voltage and current have different harmonic 
orders: 

( )( ) )(cos11 0
22

0
2

0
222

0
2

0

22

θβ IVaIV

PSQ Arms

−++=

−=
 

2222
0

2
00

0
22222

00

)(sin

)(cos1

βαβθ

θβαβ

+++=

−+++=

aIV

aIVQrms
 

The error of the estimate would be: 

( ) 1)(csc1 2222
0

2 −+++= αβαβθξ
rmsQ  (51) 

 
B) If voltage and current have different harmonic 
orders: 

( )( )
( )2

0
2
0

2
0

222
0

2
0

22

)cos()cos(

11

mn

Arms

aIV

aIV

PSQ

θθβθ

β

−+−

++
=

−=

 (52) 

( )( )
( )2

0

22

00
)cos()cos(

11

mna

a
IV

θθβθ
β

−+−

++
=  

)(cos

)cos()cos(2)(cos

1

222

00
2

2222

00

mn

mn

a

IV

θθβ
θθθαβθ

βαβα

−−

−−−
+++

=  

)cos()cos(2

)(sin)(sin

0
22

222
0

2

00

mn

mna
IV

θθθαββα
θθβθ

−−++

−+
=  

 

The error of the estimate would be: 

1

)cos()cos(2

)(sin

)(csc1

0

22

222

0
2 −



















−−
++

−

+=

mn

mn

VAR

a

θθθαβ
βα

θθβ
θξ  (53) 

4.8. Power Factor in the presence of distortion  D1 

4.8.1. Power Factor in the presence of 
distortion  D1: Arithmetic VA 

The Power factor can be derived from the 
arithmetic VA and Watt.  
 
A) If the harmonic order on the voltage axis is not 
equal to harmonic order on the current axis, the 
power factor becomes: 

( )( )

( )( )22

0

22
00

0000

11

)cos(

11

)cos(

a

aIV

IV

S

P
PF

A
A

++
=

++
==

β
θ

β
θ

  (54) 

 
The error of the estimate would be: 

( )( ) 1
11

1
22

−
++

=
a

PF
β

ξ    (55) 

 
B) If the harmonic order on the voltage and current 
axis are equal, the power factor becomes: 

( )
( )( )

( )( )22

0

22
00

0000

11

)cos()cos(

11

)cos()cos(

a

a

aIV

aIV

S

P
PF

mn

mn

A
A

++

−+
=

++

−+
==

β
θθβθ

β
θθβθ

 (56) 

The error of the estimate would be:  

( )( ) 1
11

)cos()sec(1
22

0 −
++

−+
=

a

mn
PF A β

θθθαβξ  (57) 

 

4.8.2. Power Factor in the presence of 
distortion  D1: Vector VA 

 
The Power factor can be derived from the vector 
VA and Watt. If the harmonic order on the voltage 
axis is not equal to harmonic order on the current 
axis, the power factor becomes: 
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)cos( 0
0

0 θ==→ S

P
PF  and 0=

→PFξ  , no error in 

the estimate. 

4.8.2.1. Power Factor in the presence of 
distortion D 1: Vector VA, Integral VAR 
If the harmonic order on the voltage and 
current axis are equal, and Integral VAR was 
used the power factor becomes: 

( )
2

0

2
0

0

)sin()sin(

)cos()cos(

)cos()cos(








 −++

−+

−+
=

=
→

→

mn

nm

mn

m

a

a

a

S

P
PF

θθβθ

θθβθ

θθβθ
  (58) 

                   
The error of the estimate would be: 

( )
1

)sin()sin(

)cos()cos(

)cos()sec(1

2

0

2
0

0 −








 −++

−+

−+
=

→

mn

nm

mn

PF

m

a

a

a

θθβθ

θθβθ

θθθβ
ξ

      (59) 

4.8.2.2. Power Factor in the presence of 
distortion D 1: Vector VA, Shifted VAR 
If the harmonic order on the voltage and 
current axis are equal, and Shifted VAR was 
used the power factor becomes: 

( )
2

0

2
0

0

)
2

cos()sin(

)cos()cos(

)cos()cos(








 −−++

−+

−+
=

=
→

→

πθθβθ

θθβθ

θθβθ

m
a

a

a

S

P
PF

mn

nm

mn
  (60) 

                   
The error of the estimate would be: 

( )
1

)
2

cos()sin(

)cos()cos(

)cos()sec(1

2

0

2
0

0 −








 −−++

−+

−+
=

→

πθθβθ

θθβθ

θθθβξ

m
a

a

a

mn

nm

mn
PF

 (61) 

4.9. Conclusions regarding distortion D 1: A m th 
order on voltage and a n th  order on current 
 
Just as in the case of zero-mean additive Gaussian 
noise, a harmonic on the current or voltage axis will 
force the measurement device to include the harmonic 
magnitude in its RMS voltage and current 
measurements.   
 
It is recognized that a orthogonal relationship exists 
between the fundamental and harmonic components: 





≠→
=→

=∫
+

kj

kjR
dtff

kT

kj 0

τ

τ
 

If the harmonic order on the voltage and current axis 
are not equal, the resulting metric estimates are 
analogous to that obtain for zero-mean additive 
Gaussian noise.  
   
If the harmonic order on the voltage and current axis 
are equal, then a harmonic error component will 
appear on the active power estimate (watt), and the 
reactive power estimate (VAR).  

5. Conclusion 
 
VAR Algorithm Comparison: 

• VAR RMS – Contains noise distortion error.  
• VAR Integral  – Contains error due to 

attenuated voltage and current harmonic 

contribution of
kT

1
. 

• VAR Shifted  – Contains error due even 
harmonic phase distortion whereas the even 
harmonic may not contribute to the overall 
calculation. 

 
PF Algorithm Comparison: 

• PF with VAR RMS  – Contains error due to 
over estimated VAR content. 

• PF with Integral VAR – Contains error from 
under estimated VAR content due to 
Attenuated voltage and current harmonic 

contribution of
kT

1
. 

• PF With Shifted VAR  - Contains error from 
under estimated VAR content due to even 
harmonic phase distortion. 
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VA Algorithm Comparison: 
• Arithmetic VA  – Contains noise distortion 

error. 
• Vector VA with Integral VAR  – Contains 

error from under estimated VAR content due 
to attenuated voltage and current harmonic 

contribution of 
kT

1
 

• Vector VA with Shifted VAR  – Contains error 
from under estimated VAR content due to 
even harmonic phase distortion. 

 
As shown above, each independent algorithm has 
benefits that vary depending on the quality of voltage 
and current being supplied and measured.  It is also 
evident; when measurements via RMS methods are 
used to derive VA and VAR they have inherent 
error included that gets compiled into associated 
derived measurements.  
 
From an algorithm error aspect the most accurate 
approach involves algorithms that derive its 
measurement using shifted integration in order to 
eliminate the non-orthogonal noise contribution.  

Additionally, it shows that if Watt and VAR can be 
derived independently the error can be reduced on all 
associated derived measurements.   
 
Unfortunately the measurement approaches are not 
consistent between devices and only when the 
methods are defined can the device accuracy be 
compared to a reference. 
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