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Abstract: The mass scale is realized from 1 kg reference
mass standard by applying the subdivision method to a set
of mass standards. The subdivision method is performed by
means of a series of comparisons involving combinations of
those mass standards. The sequence of comparisons is
specified according to properly chosen weighing designs
covering the entire range of nominal values of the set. The
mass value for the stainless steel 1 kg reference mass
standard used for this purpose was determinated from the
brazilian prototype K66 [1]. This article describes the
applied procedure.
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1. INTRODUCTION

One of the main tasks of the Mass Laboratory of
INMETRO, the National Institute of Metrology of Brazil, is
maintaining and disseminating the SI mass unit, the
kilogram, in order to provide traceability from the
international prototype of the kilogram − kept by the Bureau
International des Poids et Mesures −  for mass
measurements in Brazil.

Formerly, national reference mass standards were
constituted by a set of mass standards, calibrated by the
NPL-UK, thus, traceability from the international prototype
of the kilogram was obtained through the UK national
prototype K18.

For the first time in Brazil traceability from the
international prototype of the kilogram was derived from the
Pt-Ir brazilian national prototype of the kilogram K66 to
realize the mass scale (multiples and submultiples).

2. METHODOLOGY

For realizing the mass scale it was used a set of stainless
steel mass standards of nominal values from 500 g to 1 mg.
The standards of this set has OIML shape [2] and includes
two 200 g discs and one 100 g disc. Their identification
codes, shapes and marking are shown on table 1. The  1 kg
stainless steel  reference mass standard for this procedure
was calibrated against the brazilian prototype K66 [1] and
its identification code is R-PP062.

The weighings were performed on a mass comparator
Mettler Toledo AT1006 which uses the principle of
electromagnetic force compensation. It has a resolution of
1µg and performs the mass comparisons by means of  an
automatic load exchanger.

Table 1. Characteristics of  the stainless steel set

Nominal Value Identification
Code

Shape Marking

500 g PP062 OIML
200 g PP061 Disc O
200 g PP061 Disc o
100 g PP061 Disc O
100 g PP062 OIML
50 g PP062 OIML
20 g PP062 OIML *
20 g PP062 OIML
10 g PP062 OIML
5 g PP062 OIML
2 g PP062 OIML *
2 g PP062 OIML
1 g PP062 OIML

500 mg PP062 wire
200 mg PP062 wire ^
200 mg PP062 wire
100 mg PP062 wire
50 mg PP062 wire
20 mg PP062 wire ^
20 mg PP062 wire
10 mg PP062 wire
5 mg PP062 wire
2 mg PP062 wire ^
2 mg PP062 wire
1 mg PP062 wire

A climate station, Meteorlabor Klimet A30, was
used to measure the environmental air parameters
within the weighing chamber of the mass comparator.
The metrological characteristics of the climate station
sensors are shown in Table 2.



Table 2. Metrological characteristics of instruments used for
air density determination

MeteorLabor
Klimet A30

ID d uc

T1 0,001 °C 0,008 °C
Temperature

T2 0,001 °C 0,008 °C
Relative
humidity

Dew point 0,001 °C 0,13 °C

Atmospheric
pressure

P 0,001 hPa 0,025 hPa

2.1. Weighing designs

Ideally it would be necessary just one kind of weighing
design, for example, C.8 of Cameron et al [3], to perform all
the comparisons corresponding to the six decades, but due
to limited height of the weighing chamber (95 mm) it was
not possible  to mount the combination of standards for the
first decade (500 g to 100 g). Then it was chosen the
weighing design C.10 for the first decade and disc shape
standards were introduced. For other decades the C.8
weighing design was used. The weighing designs C.10 and
C.8 are shown, respectively, in tables 3 and 4.

Table 3. Weighing design C.10

Comparison 500 g 200 go 200gO 100 g 100 g Σ 100g

1 + - - - - +

2 + - - - + -

3 + - - + - -

4 + - - - -

5 + - - - -

6 + - + -

7 + - - +

8 + - + -

Restraint + + + +

Table 4. Weighing design C. 8

Comparison 5 x 10n g 2 x 10n g 2 x 10n g * 10n g Σ 10n g

1 + - - -

2 + - + -

3 + - - +

4 + -

5 + - -

6 + - -

7 + -

Restraint + + + +

n = 1, 0, -1, -2, -3 (for n = -3, the summation becomes only one
standard)

These weighing designs form a matrix system of
linear equations per decade.

2.2. Mathematical model for the true mass value difference

In order to obtain true mass differences ∆m from the
difference ∆I  indicated by the comparator the mathematical
model in equation (1) has been applied. This mathematical
model is based on the balance of forces due to gravity and
air buoyancy which act upon the weights during weighing.

( )T1VSIm ar ∆⋅α−⋅∆⋅ρ+⋅∆=∆ (1)

where:

∆m  true mass difference between the arrangements of mass
standards (mi - mj)
∆I   indication differences displayed by the comparator
S   balance sensitivity
ρar   air density during the comparisons
∆V   volume difference between the arrangements of mass
standards at 20 ºC
α  coefficient of the volume expansion
∆T  temperature variations of mass standards in relation to
reference temperature of 20 ºC

The indication differences were obtained from a series of
six ABBA weighing cycles for each pair of mass standards
combinations involved in the weighing designs.

2.3. Least squares method

From the weighing designs and the true mass
differences, equation (1), the following matrix of weighing
equations can be obtained:

Y  =  X.β  +  e (2)

where:
Y vector of the true mass differences
X design matrix
β vector of the unknown mass values
e vector of the unknown errors of the observations

The mass values for the standards were obtained from
the solution of equation (2) using the classic least squares
analysis with Lagrange multipliers considering the mass
value of the appropriate restraint Bich [4].

2.3.1. Solution of the linear system by restrained
least squares approach

By the least squares analysis the normal equations are
defined as:

X’X.b  =  X’.Y (3)

where:

b is the vector of the estimated unknown mass values
Y vector of the true mass differences



X design matrix
X’ is the transpose of X

Due to Y is a vector of mass differences, equation (3)
doesn’t provide a unique solution for b unless a restraint
mass value be considered.

The restraint mass value is a linear combination between
elements of β vector.
r'.β  =  MR (4)

where:

r’ is the row vector which performs the linear
combinations in elements of β vector
MR is the restraint mass value

After introducing the restraints by means of Lagrange
multipliers , the new normal equations obtained are:
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where:

λ is the Lagrange multipliers
r is a column vector, transpose of r’

The general solution for equation (5) may be written as
follows:
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where:

C is a matrix which performs combinations between
elements of X’Y matrix

h is a vector whose elements weight the restraint mass
value
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Thus, the general form of the least squares’ solution by
Lagrange multipliers for the estimated unknown mass
values is:

b  =  CX’.Y  +  h.MR (7)

2.4. Systematic effects

Systematic effects in comparisons of mass standards
arise mainly due to air buoyancy, magnetic, thermal and the
mass comparator effects.

All of these effects were corrected as follows.

2.4.1. Mass comparator effect

A limited resolution, non-linearity and excentricity of
the mass comparator can cause systematic errors in the
displayed differences. Such systematic erros are considered
as having zero value but an uncertainty value was
considered for them.

The mass comparator sensitivity was determined before
performing the complete set of comparisons. The measured
value was: S = 0,99984 mg/mg with a standard uncertainty
u(S) = 0,00011 mg/mg.

2.4.2. Air buoyancy effect

The air buoyancy correction is obtained from the mass
standards volume and the determined air density values.

• the air density was determined from CIPM 2007
equation [5];

• the values for volume of mass standards and their
uncertainty are shown in Table 5.

Table 5. Volume of mass standards

NominalValue Volume at 20 °C
cm3 uc

500 g 62,8 0,2
200 g 25,1 0,1
100 g 12,6 0,1
50 g 6,28 0,02
20 g 2,51 0,01
10 g 1,26 0,01
5 g 0,628 0,002
2 g 0,251 0,001
1 g 0,126 0,001

500 mg 0,0628 0,0002
200 mg 0,0251 0,0001
100 mg 0,0126 0,0001
50 mg 0,00628 0,00002
20 mg 0,00251 0,00001
10 mg 0,00126 0,00001
5 mg 0,000628 0,000002
2 mg 0,000251 0,000001
1 mg 0,000126 0,000001

2.4.3. Thermal effects

All weights were kept inside weighing chamber, with the
mass comparator turned on, for a time long enough to
reduce any effect on weighing  results arisen from
temperature differences between the mass comparator, the
mass standards and the surrounding air, Gläser [6].

2.4.4. Magnetic effects

Since weighings are executed on a electromagnetic force
compensated mass comparator and mass standards are made
of stainless steel alloy an unsuspected vertical magnetic
force could be influencing the results [7].



In order to avoid  this, the magnetic susceptibility of
each mass standard was measured using a susceptometer
developed by the BIPM, Davis [8].

All magnetic susceptibility measured values for the
stainless steel standards were lower than the permissible
limit for OIML class E1 weights.

2.5. Uncertainty

The uncertainty estimation is obtained from the
variance-covariance matrix where the diagonal elements are
the variance values and the off-diagonal elements are the
covariance values.

2.5.1. Type A evaluation of the uncertainty

The type A evaluation of the uncertainty is based on a
statistical data analysis [9]. Such statistical analysis
performed by the least squares method provides the
variance-covariance matrix ψΑ of the mass values arisen
from the weighing designs [10].
A general form of the variance-covariance matrix is:

ψΑ   =  ( CX’XC’ ).σ2 (8)

where:

C ' is the transpose matrix of C
σ2 is the variance of the elements of the Y

Equation (8) is obtained on the hypothesis that there
isn’t random covariance between elements of vector of the
true mass differences Y.

A variance σ2 is estimated from of:
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where:
s2 is the estimated variance
r is the number of rows from X
c is the number of columns from X

2.5.2. Type B evaluation of the uncertainty

The type B evaluation of the uncertainty isn’t based on
statistical analysis, but on all the available information about
possible variations in the input quantities. This information
is contained in Y and MR, in the equation (7).

The variance-covariance matrix based on the type B
evaluation, ψΒ , was determined considering the
contributions due to indication differences, air density, mass
standards volume, mass comparator effects and restraint's
mass value.

The general form for the estimated mass standards
values bi obtained from equation (7) is:
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where:

MR is the restraint mass value
∆Ik is the difference displayed by mass comparator in the
k-th comparison in the weighing design
S  balance sensitivity
ρark is the air density in the k-th comparison in the
weighing design
Vl is the l-th volume of mass standard
∆Tk is the difference of the temperature in relation to
20 ºC in the k-th comparison in the weighing design
ki         is a constant coefficient which weights the restraint
mass value
γik , νik e ηkl  are constants coefficients elements from matrix
product CX’

The uncertainties, uB, arisen by the type B evaluation
were obtained from GUM’s law of propagation of
uncertainty [9] applied to equation (10), as shown below:
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where:

u2  is the square of the standard uncertainty
wl , wp  represents the input quantities
cov is the a covariance between the input quantities wl
and wp
uB is the type B uncertainty

For any two mass values bi and bj there is a dependence
on the air density, comparator sensitivity, indications
difference displayed by the comparator, the coefficient of
the volume expansion, the volume of the standards, the
estimated temperature of the thermal equilibrium and the
restraint mass value. This dependence makes these mass
values correlated.

The covariance between two mass values is defined as,
equation (12):

( , ) ( ) ( ) ( )i j i j i jcov b b E b b E b E b= ⋅ − ⋅ (12)
where E is the expected value.

The covariance term between any two mass values bi, bj
is obtained from equation (13):
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where:

cov(bi,bj) is the a covariance between the mass values
cov(wl,wp) is the a covariance between the input
quantities wl and wp

From variances and covariances obtained, a variance-
covariance matrix, based on a type B evaluation, ψΒ can be
written as:
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For the uncertainty of results to include the long term
variability of the measurement process, its estimated
variance σp

2 was added to diagonal elements of ψΒ ,   thus
obtaining the variance-covariance matrix ψ:

ψ = ψΒ + σp
2. I (15)

where I is an identity matrix.
Then, the combined variance-covariance matrix ψc of the
mass values was obtained by the sum of ψ and ψA.

= +c Aψ ψ ψ  (16)

3. RESULTS

The result of this work, the assigned mass and
uncertainty values for the set of mass standards, are shown
on Table 6.

Table 6. Results

Mass standard
nominal value

Assigned
mass value

g

uc
mg Marking

500 g 500,000 241 0,143
200 g 199,999 898 0,057 O
200 g 200,000 005 0,057 o
100 g 100,000 012 0,029 O
100 g 100,000 053 0,029
50 g   50,000 027 0,015
20 g   20,000 016 0,006 *
20 g   20,000 012 0,006
10 g   10,000 005 0,003
5 g     4,999 996 0,002
2 g     2,000 005 0,001 *
2 g     2,000 004 0,001
1 g     1,000 003 0,001

500 mg 0,500 000 0 0,0007
200 mg 0,199 998 8 0,0005 ^
200 mg 0,200 002 4 0,0005
100 mg 0,100 001 1 0,0005
50 mg 0,049 999 4 0,0003
20 mg 0,019 998 1 0,0002 ^
20 mg 0,019 999 0 0,0002
10 mg 0,010 001 3 0,0001
5 mg 0,005 001 0 0,0006
2 mg 0,002 001 8 0,0005 ^
2 mg 0,001 999 8 0,0005
1 mg 0,001 001 0   0,0005

Figure 1 shows the combined variance-covariance
matrix graphs for each decade. In these graphs axes, in the
horizontal, plane correspond to the nominal values.

Fig. 1. Variance-covariance graphs per decade.



Each node shown in the graph corresponds to a value of
variance (diagonal nodes) or covariance (off-diagonal
nodes).

The results can be validated by comparison with check
weights formerly calibrated by the NPL as shown on
Table 7.

Table 7. Assigned mass values, their uncertainties and normalized
error (En) obtained against check weights mass values

Assigned mass
value

g

U

(k=2)
mg

Check
weights

g

U

(k=2)
mg

En

500,000 241 0,286 500,000 301 0,050 -0,21
  50,000 027 0,030  50,000 032 0,008 -0,16
   4,999 996 0,004   4,999 995   0,001 2 0,24

     0,500 000 0 0,0014     0,500 001 2   0,000 6 -0,79
     0,049 999 4 0,0006     0,049 999 1   0,000 6 0,35
     0,005 001 0 0,0012     0,005 001 1   0,000 6 -0,07

4. CONCLUSION

The Inmetro’s mass scale from 1 kg to 1 mg has been
realized and linked to the prototype K66 mass value through
the reference mass standard R-PP062.

For the higher nominal values for which the buoyancy
effect is more significant, obtained uncertainty of the mass
values is high due to estimated value for the volume of mass
standards. Calibration in volume will improve the
uncertainty values.

Comparison with mass values of the check weights from
Table 7, shows the compatibility between obtained results
and earlier mass values.

The obtained results show that the mathematical
procedure by using least squares method was properly
applied and that the laboratory facilities are adequate. Thus
the process can be considered reasonably under control.

Next step will be to participate in interlaboratory
comparisons between INMETRO and other NMIs to
consolidate the whole procedure.
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