

Compliance and Risk Management in the Fourth Revolution

James H. Lambert University of Virginia, USA

Motivation

Top Amazon China Sellers

Here are the top 500 sellers on the Amazon.cn marketplace.

						y Giry	
				F	eedback		
#	M'place	Store name	Total	12 mo	3 mo	1 mo	Pos %
1 —		新华文轩网络书店 (四川文轩在 线电子	123,947	47,638	7,515	1,615	89
2 —	20	博库网官方旗舰店 (博库网络有 限公司)	41,824	16,994	2,023	499	86
3	2	北发图书网旗舰店 (北京北发电 子商务…	5,769	5,437	1,554	431	89
4 🔺	20	中关村图书大厦专营店 (北京中 关村图…	7,248	4,729	1,514	142	92
5 🔺		上海外文书店 (上海外文图书有 限公司)	9,785	4,037	725	207	99
6 🔺	20	王府井书店 (北京市新华书店王 府井书店)	3,218	2,930	1,087	126	91
7		北京图书大厦旗舰店 (北京图书 大厦网	2,907	2,907	1,314	339	92

Supply chain reliability, security, trust, .

July

Risk, Safety, and Security Programs

What is scope of the program Where are the resources How is monitoring and evaluation

An influence of scenarios to priorities.

Lambert et al. (2017, 2016, 2014, 2013, 2012, 2011, 2010, 2009)

The effect of uncertainty on objectives. ISO 31000 (2009)

What can be done in what time frames, what are the tradeoffs, and what are the impacts of current decisions on future options Haimes (1991)

What can go wrong, what are the likelihoods, what are the consequences Kaplan and Garrick (1981)

Measure of the probability and severity of adverse effects. Lowrance, Of Acceptable Risk (1976)

Regulatory

 New guidelines or increasingly stringent national or international trade policies.

Technological

 Immediate, unforeseen shifts in the directions of energy technologies (such as nuclear technologies, coal technologies, or promising renewable energy technologies).

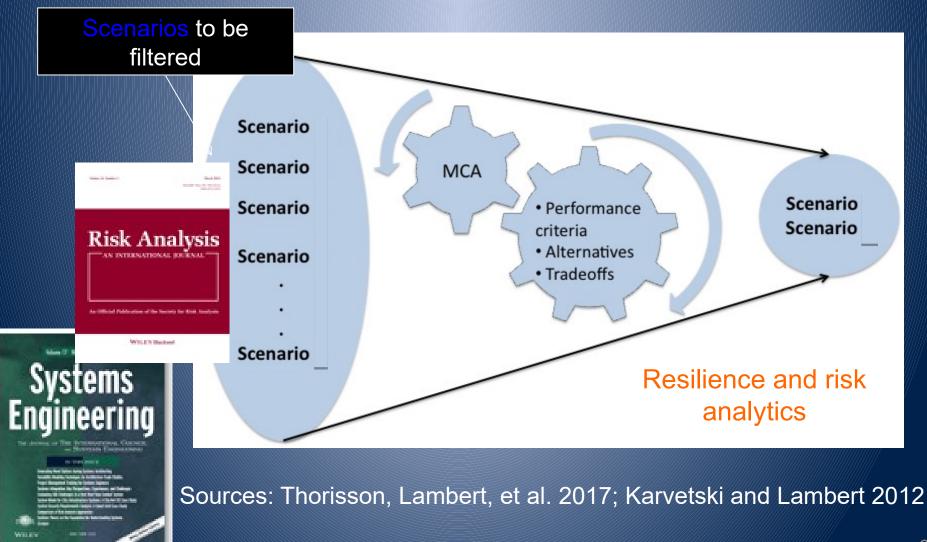
• Cyber

Known and unknown conditions of data/information and control systems

Geopolitical

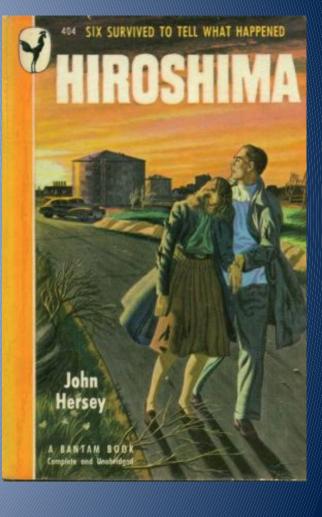
- Shifts in the geopolitical power relating to fossil fuels and natural gas that influence availability and costs
 of these energies.
- Behavioral
 - Changes in societal viewpoints or lack of acceptance of energy legislation.

Climate and others


 Disruption of infrastructure services, commercial energy grid failures, destruction of energy systems, and deterioration of energy and other infrastructure systems.

Sources:

 Thorisson, Lambert et al. 2017;
 Nakićenović, N. (2000). Energy Scenarios. Chapter 9 in United Nations Development Programme. United Nations Department of Economic and Social Affairs. World Energy Council. <u>World Energy Assessment</u>. New York 2000



Motivation (cont.) Influences of Scenarios to Priorities

...presence of justice and the absence of fear...

Ursula Martius Franklin (1921–2016) Inducted to the SRA Pantheon of Risk Analysis (2017) http://www.sra.org/pantheon-risk-analysis

"Fear of radiation and radioactive contamination has the potential to produce complicated behavioral responses and pose additional challenges to a coordinated response." -Dodgen et al.

"Dirty Bomb attacks among the fifteen National Planning Scenarios that have the greatest risk of mass fatalities, injuries, property loss and major social disruption."

-US Department of Homeland Security

"An understanding of **behavioral aspects** of both disaster management personnel and the **civilians impacted by catastrophes** is essential to improving response performance" -Gheytanchi et al.

"...Radiological disasters cause significant fear and disruption among the population compared to other emergencies."

-Perry and Lindell

Goal

Discover implications of population behaviors for resilience to radiological emergencies, addressing a dirty bomb in the National Capital Region disuprting the priorities of agencies in sheltering and evacuation.

Objectives

- Model implications of population behaviors
 - **Evacuation on road network**
 - Emergency response initiatives
- Extend the Survey of Population B

- Conduct interviews with practitioners
- Characterize initiatives for agencies
- Identify additional stakeholders, interests, requirements, etc.

Background

Scenario 1a: One dirty bomb in Tyson's Corner, VA Scenario 1b: One dirty bomb in College Park, MD Scenario 2: Multiple dirty bombs across the region

Dirty bomb event at several hazard levels

- Minimum
- Moderate
- Maximum
- Behaviors and needs
 of affected
 population in the
 aftermath of a
 regional radiological
 disaster

Population Behaviors in Dirty Bomb Attack Scenarios: A Survey of the National Capital Region

REPORT OF RESULTS

Prepared for: VIRGINIA DEPARTMENT OF EMERGENCY MANAGEMENT April 2010

Prepared by:

Thomas M. Guterbock, Ph.D. Director, CSR

Robin A. Bebel Assistant Director, CSR

Deborah A.Kermer Research Analyst, CSR James H. Lambert, P.E., D.WRE, Ph.D. Associate Director, CRMES

James M. Ellis, Jr. Director of Research, CSR

With Assistance from:

John Lee Holmes Survey Operations Manager, CSR Ayse I. Parlak Research Analyst, CRMES

"The survey data are beneficial to planners and government officials in the National Capital Region as well as surrounding states as we look at potentially providing shelter, transportation and public information to people in need"

"Results from the survey will help refine emergency response, traffic movement and evacuation plans."
-Virginia Department of Emergency Management (2016)

Emergency management and preparedness
 – Rao, Perry and Lindell, Tierney et al., Mileti

- Radiological emergencies and uncertainties of population behaviors
 - Wein et al, DHS, Carter et al., Dombroski et al., Dombroski and Fischbeck, Dombroski

Uncertain behaviors of the population

 Kang et al., Lindell and Prater, Tanaka, Southworth

Uncertain population behaviors of interest to agencies

Behaviors

Trust in people, local /state /federal government Emergency preparedness Shelter-evacuate behaviors under different conditions Evacuation detail (vehicles, destination) Expected services Consulted Sources of information channels & people Confidence in utilities and services

TECHNICAL APPROACH Part 1. Compliance in Evacuation

Technical Approach: Evacuation

Behavioral Survey Data

Transportation Planning Board Travel Forecast Data

Travel demand model Identification of critical locations in the transportation system

rict of Columbia

270

Arlington

yson's Corner

Several hundred miles of highway network in the National Capital Region, with over six hundred highway sections

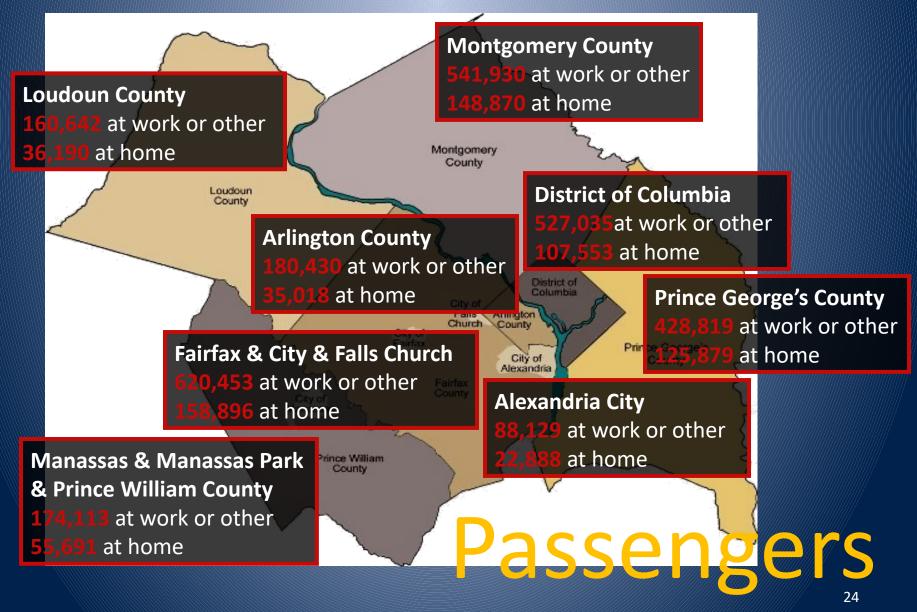

College Park

Three scenarios:

1a. One dirty bomb in Tyson's Corner1b. One dirty bomb in College Park2. Multiple dirty bombs in the region

Bowie

Figure 1-1 Modeled area: 2,191 TAZ, 22 jurisdictions


Eight jurisdictions and six million in population District of Columbia Arlington •Alexandria •Fairfax •Prince George's Montgomery •Prince William •Loudoun

all of			Alexandria	Xe	uno	e E	Montgomery	e ge's	_		4						
Scenario 1A			Alexa	Fairfax	Loudoun	Prince William	Mont	Prince George's	other	TOT							
Tyson's							-					Eva		ati	on		
Corner	93 9,9	49 4,6	624 16	,015 6	,973	9,184 2	9,521	43,257	29,26	5 202 ,	,302			au			
<mark>,</mark> ,410	9 20,8	339 4,4	25 12	,099 6	,916	7		<u>ب</u> ه	_	ā.		ori	σin	S a	nd		
Alexandria 1,013	3 2,4	96 9,6	516 7,	674 3	Sco	enario	. ?	District of Columbia	Arlington	Alexandria	rfax	- P	nce	ntg	nce	<u> </u>	TOTAL
Farifax&City& 1,29	7 2,9	27 2,0)26 59	,485 3	-			Col Col	Arl	Ale	Eai	int	end	dèc	Prij	Othe	Į D
Falls Church	d.	3 7	3 7	588 3	Page 1	ultiple		2,363	1,470	1,061	2,64 2	5,666	5,836	11,384	10,328	58,604	129,354
	a	c	ria		alr			1,650	5,379	1,776	4,205	des	stir	nat	ior	S ⁹¹⁶	0,469
Mana Prince 1	District of Columbia	Arlington	Alexandria	Fairfax		mbs		415	886	2,448	2,30		2,881	639	364	9,223	1,931
Montg	Co Dis	Arl	Ale	Fai	Lou	Farifax&	city&	1,834	3,778	3,344	33,35	for	21,350	2,506	2,862	64,533	153,913
Prince C District of	106,661	10,446	5,121	17,009	4,247	Falls Ch Loude		366	616	600	2,8!6	5 11.706	5.128	540	569	16,579	8,961
Scenario 1B	5,424	21,549	5,134	13,518	5,922	Manas	cac fi	486	815	818		03	SC		GC	brc	0,239
College	1,013	2,793	9,913	8,268	2,429	Prince W	/illiam	486			2,312		<u> </u>		8		
Park	2,367	9,727	7,749	137,055	32,784	Montgo		6,610	558	433	1,350	3,146	3,098	17,177	49,067	62,015	1 <mark>43,453</mark>
Loudoun	121	624	553	8,648	35,877	Prince G	eorge's	6,918	479	499	1,143	3,280	3,287	39,502	18,841	67,428	141,377
				, ·		тот	L				000						729,697
Manassas& Prince William	153	1,013	1,026	5,182	8,177	48,244	433	29	16,9	,	202						
Montgomery	13,949	1,028	401	3,239	1,605	1,365	212,49	5 8,84	3 48,5	82 291	.,507			••••			
Prince George's	6,499	249	284	809	1,070	1,081	41,412	2 38,74	7 37,5	69 127	,719	Ove	r one	e milli	on ir	Idivic	luals
TOTAL										1,19	7,081						

Scenario Tyson's Corner) 1A	Arlington		Alexandria	Fairfax	Loudoun			Villiam		George's		TOTAL		0	vac rigi	ns	an	
District of Columbia	57,753	5,34	7 2	,485	8,60	2,92	24		cenari 1ultipl		E	dria		c		nter		ea	
Arlington	3,453	13,25	55 2	,814	7,69	4,89	95		irty		Arlington	Alexandria	Fairfax	Loudoun	Ć	est	ina	tio	ns
Alexandria	718	1,76	5 6	,800	5,42	7 2,24	11	b	ombs		`			-			10		
Farifax&City& Falls Church					_	.e			olumbia rlington	15,557	740	520	1,319	2,642	<u>,</u> ,770) (,943	5,510	27,360	61,325
Loudoun			District of Columbia		Arlington	Alexandria			-	1,097	3,501	1,209	2,872	4,767	l,872	793	834	16,078	36,022
Manassas&			Dist		Arli	Alex			exandria	303	642	1,747	1,699	2,041	2,1	en	E	es	16,254
Scenar	io 1B	f	57,75	3 5,	625	2,763	9	E a l	fax&City& ls Church	1,454	2,976	2,644	25,721	16,241	17,014	2,266	1,993	51,650	121,960
College	9	a N	3,453	3 13	,728	3,288	8		oudoun	305	513	501	2,344	9,605	4,270	474	451	13,819	32,283
Park		ia	718	_	986	7,021	5	Ma	anassas& ce William	422	707	710	1,977	5,671	12,813	634	634	19,474	43,042
	Farifax&	•	1,762		077		10	4	ntgomery	5,138	433	341	1,041	2,491	2,456	37,220	13,537	49,057	111,714
	Falls Church Loudoun		97		95	438	6		e George's	5,747	405	421	951	2,818	2,823	15,966	31,776	57,554	118,460
	Manass		95	6	510	621	2	,783	TOTAL 4,939	37,478	264	24	10,846	58,66	0				541,060
	Prince William Montgomery		10,30		61	295		,401	1,174	995	157,149	6,567	35,542		92	ver 80	າດ ດດ	0 veb	icles_
	Prince Ge	orge's	5,225	5 2	.02	228	6	541	907	915	34,867	29,649	31,328	103,90	(//////////////////////////////////////		50,00	-	
	ΤΟΤΑ	L												836,08	38				22

19 destinations (8 inside-NCR, 11 Other)

S	District o Columbia	Arlington	Alexandri	Fairfax	Loudoun	Prince William	Montgon	Prince George's	Other	TOTAL
Di Su of Co Suo f Ar O n	57,753	5,347	2,485	8,607	2,924	4,112	15,154	22,536	13,257	132,174
	3,453	13,255	2,814	7,695	4,895	5,375	1,295	1,481	7,338	47,601
Ale XO ia	718	1,765	6,800	5,427	2,241	2,777	243	1,130	3,486	24,587
Farif d ty& Fall D ch Lc D h	1,020	2,242	1,551	45 5F 0	2) 8 9	29, 75	1.705	1,139	36,562	147,123
	97	76	19	6,154	29,855	5,548	219	112	7,910	49,990
Ma n Con s& Prince William	95	25	37	2,615	6,107	38,646	144	144	10,846	58,660
Montgomery	10,307	652	187	2,183	1,391	1,213	141,458	22,258	35,542	215,192
Prince George's	10,569	275	355	1,264	1,145	1,171	24,755	104,328	41,629	185,490
TOTAL										860,816

Technical Approach: Evacuation (cont.) Adapted an existing model to allocate demand across the localities and highways

$$P_{i}' = (P_{(+18)_{i}} - \sum_{j=1}^{n} HBW_{ij}^{adj})(\text{at home}\%) + \sum_{j=1}^{n} HBW_{ji}^{adj} + \sum_{j=1}^{n} HBO_{ji}$$

$$+\sum_{i=1}^{n} HBS_{ji} + P_{(-18)_i}$$

Population of county i at 2 pm =

(Number of people 18+ arriving for work in county i by 2 pm)

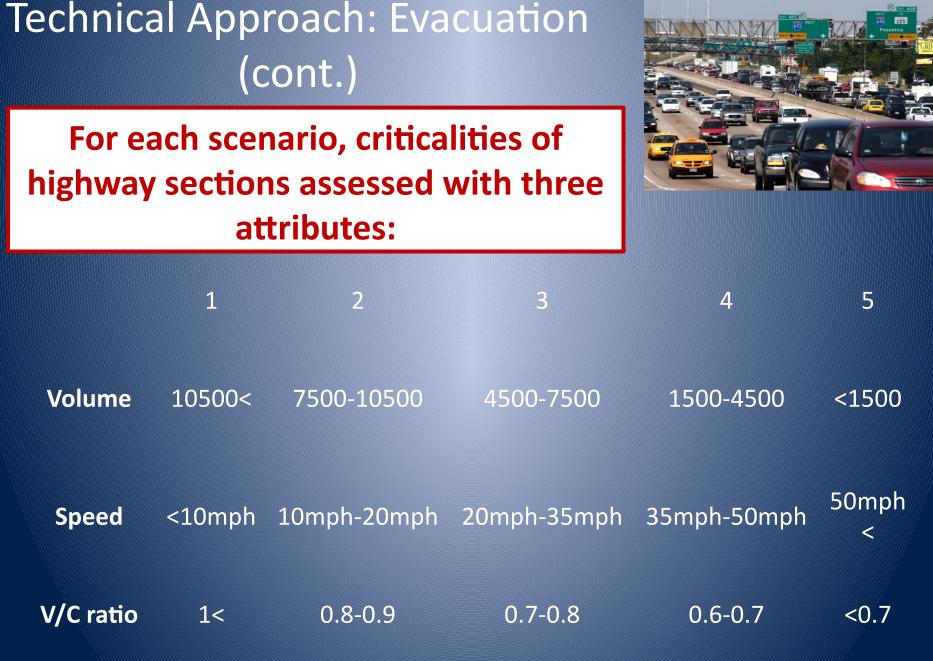
- + (Number of people 18+ arriving for another activity in county i at 2 pm)
- + (Number of people 18+ staying at home in county i at 2 pm)
- + (Number of people under age 18 population of county i)

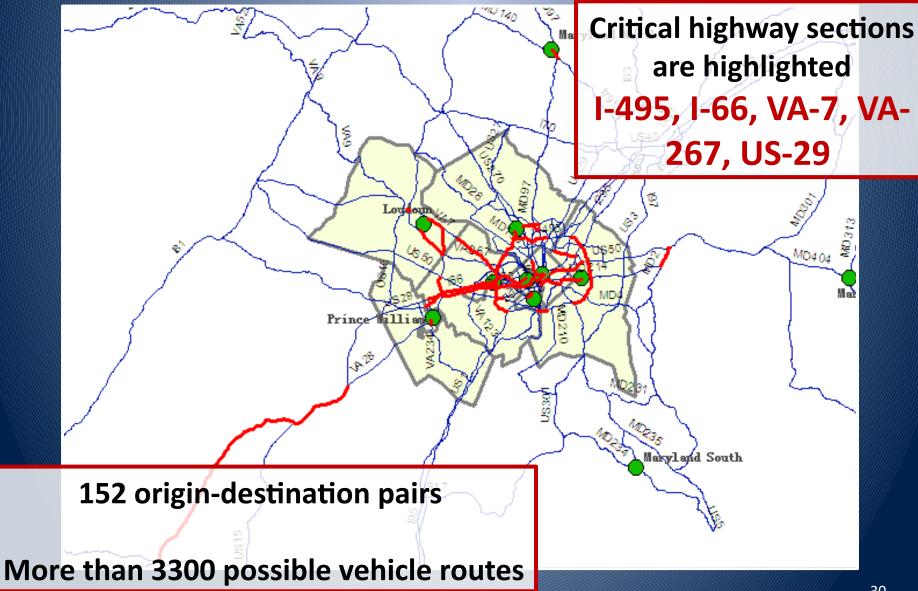
Technical Approach: Evacuation (cont.)
 Modeled 3 types of evacuation behaviors
 1. From work or other places to home
 2. Evacuation from work or other places
 3. Evacuation from home

Trips from jurisdiction *i* to jurisdiction *j*

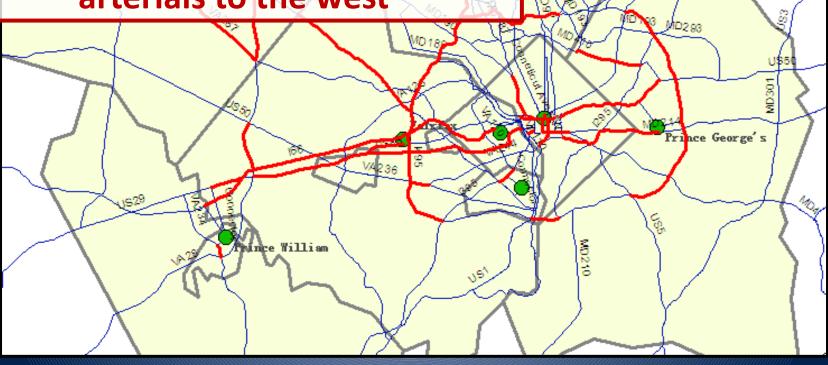
- People at home in jurisdiction *i* * percentage leaving immediately from home * percentage evacuating to jurisdiction *j*
- + People at work or other building in jurisdiction *i* * percentage evacuating from work or other building * percentage evacuating to jurisdiction *j*
- + People at work or other building in jurisdiction *i* and live in jurisdiction *j* * percentage going home from work or other building

- Over 90% of the evacuees intend to use their own, their family's, or someone else's vehicle
 - Home based work auto driver trips
 - Home based shopping and other auto driver trips
 - Persons per household
 - Vehicles per household
 - Average auto occupancy rates
 - Public transportation use percentages

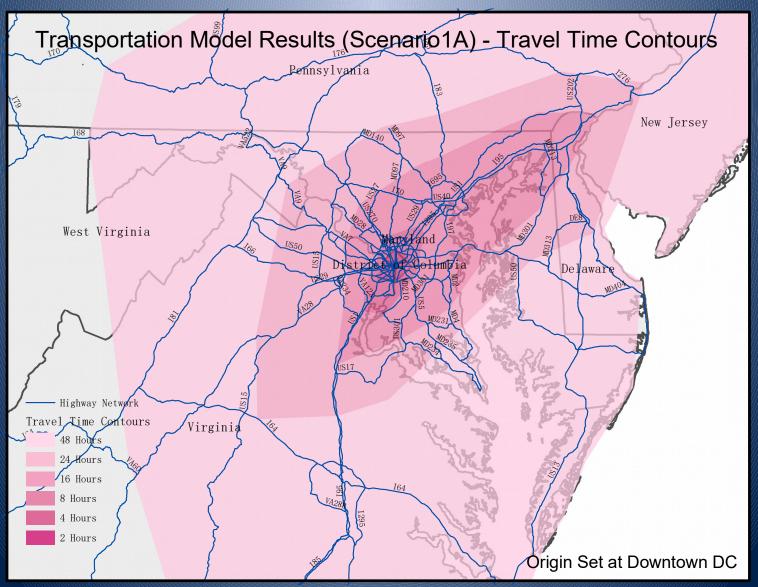

Adapting travel demand models to the several dirtybomb scenarios

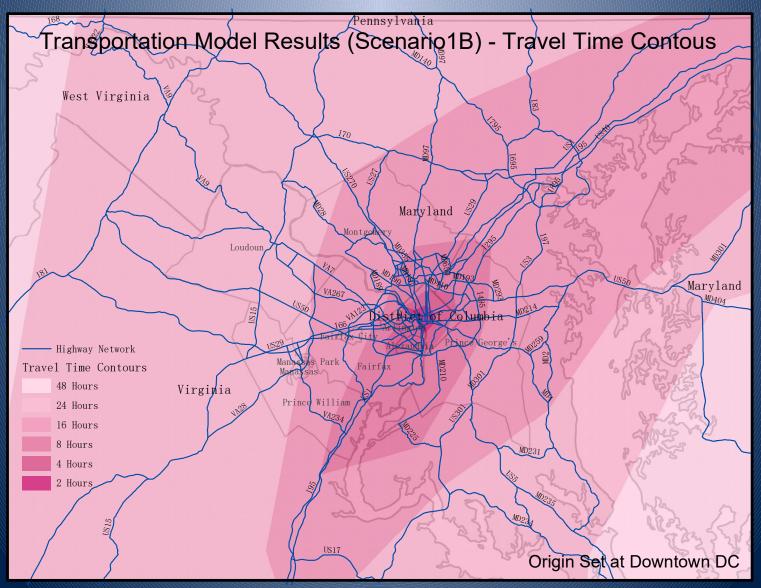

Scenario	Total evacuees	Total evacuating vehicles
1A (Tyson's Corner, VA)	1,205,088	860,816
1B (College Park, MD)	1,197,081	836,088
2 (Multiple bombs in NCR)	729,696	541,060

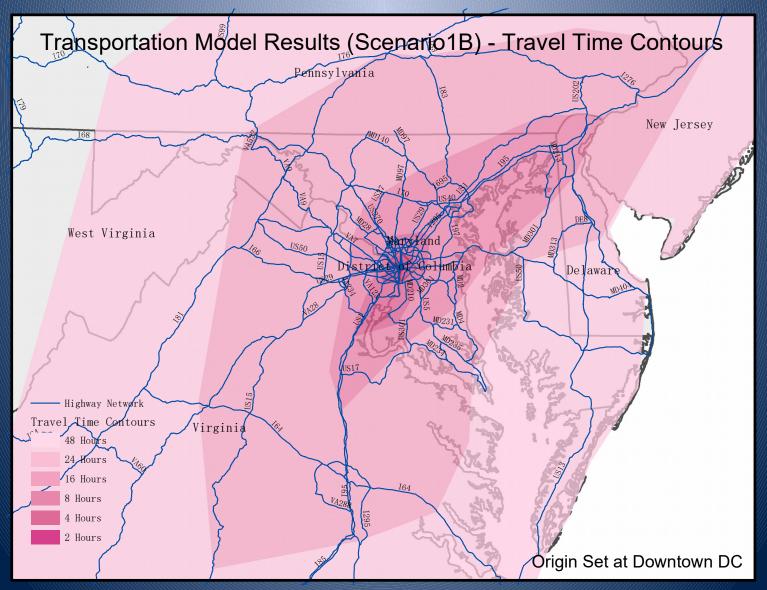
Source: Guterbock and Lambert et al.

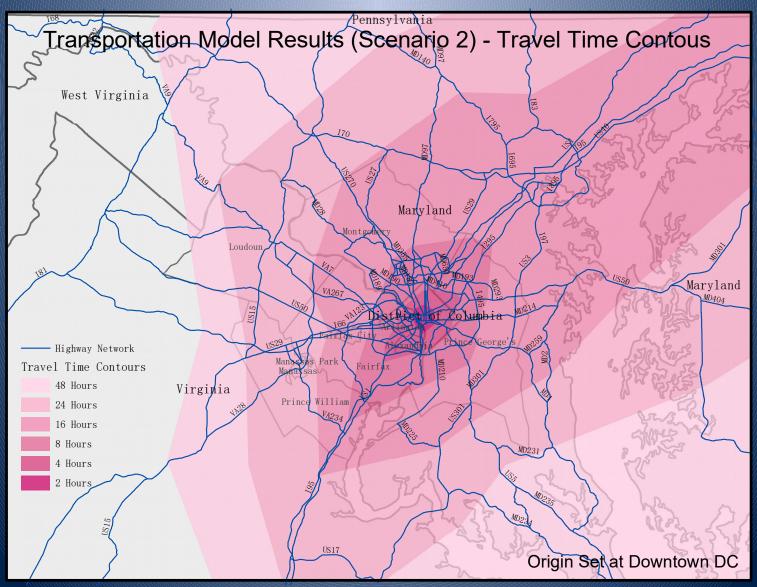

Scenario	Total trips occurring on the network around 2 pm	Trips moving between points within the NCR	Trips leaving the NCR
0	1,085,278	718,771	26,217
1A	1,946,094	1,423,017	182,787
1B	1,921,366	1,412,455	168,622
2	1,626,338	1,017,910	268,139

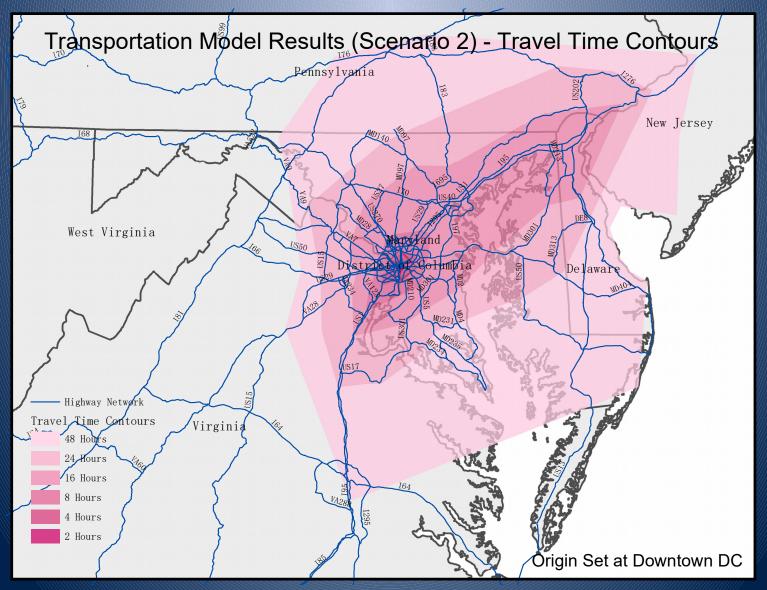
Scenario 1A (Tyson's Corner) produces highest total demand and highest demand in the National Capital Region Scenario 1A (Tyson's Corner) and Scenario 1B (College Park, MD) have similar patterns in terms of total demand and distribution of demand Although Scenario 2 (Multiple dirty bombs in NCR) generates lowest total demand and lowest inside-NCR demand, it generates highest outside-NCR demand






Across the three scenarios, the most critical highway sections are located in central Washington, DC, Capital beltway, interstates, and arterials to the west




Evacuation Times from Downtown

Sample of Results

- Uncertain behaviors matter at least as much as the bomb locations
- Individual choices of drivers are influential to the performance of the highways
 - Traveler information, detours, and contraflows could be critical for mitigating breakdowns
- For each of the three scenarios (1a, 1b, and 2):
 - Several hundred thousand evacuees on the highways
 - Highways fail to perform at multiple critical highway sections, in terms of volume, speed, and volume-to-capacity ratio

TECHNICAL APPROACH Part 2. Compliance in Emergency Response

- S₀₁ A majority of affected population will lack preparedness and tend to become "walking wounded"
- S₀₂ A majority of affected population will have limited access and trust in information sources
- s₀₃ A majority of affected population will lack confidence in transportation, energy, communication or other infrastructure
- s₀₄ A majority of affected population will have unpredictable compliance with shelter in place directions

This scenario assumes that the majority of affected population will lack basic preparedness such as emergency kits including essential medical supplies, food or water. There is large number of people on the streets with minor to medium level injuries.

This scenario assumes that due to various factors (either because of physical factors such as power outages and behavioral factors such as having no access do to being on the streets.), access to information

channels is limited. The affe information broadcasted via The affected population has functionality of public trans services, etc. Power and ene

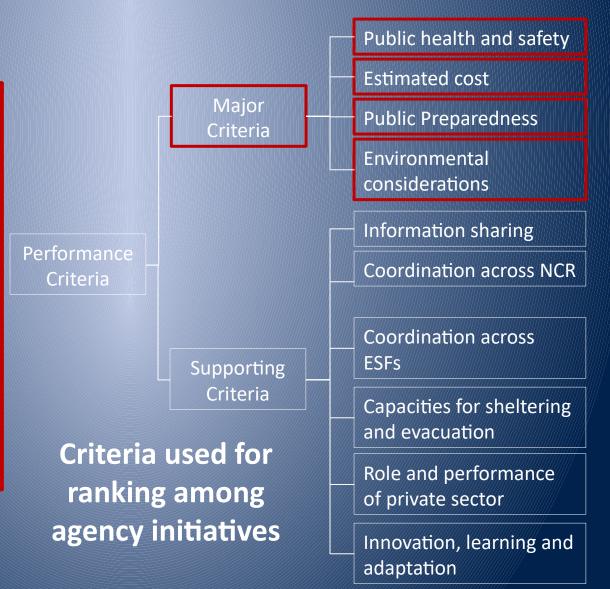
After a radiological attack, r effective to shelter in place not in the hot zone ie. the ir bomb. Affected population place due to many reasons i a family member.

Focus is on five behavioral assumptions

s₀₅ Private sector workers will be willing to have unprecedented role in emergency response

One of the major concerns is about private sector and critical workers. Since most of the critical infrastructure and key resources are operated by private sector, the worker's behaviors have a huge impact on the society. This scenario assumes that workers will not leave their workplaces and the services they provide will be uninterrupted.

30 initiatives of agencies


- 1. Improve mobility options for disabled and special needs populations
- 2. Provide education and training for citizen emergency preparedness
- 3. Increase availability of real time public **information and advisories**
- Improve interoperability of emergency communications among first responders
- Increase stockpiles and availability of essential medical supplies
- 6. Increasing the shelter availability
- 7. Improve planning that facilitates shelter-in -place
- 8. Increasing number of **first aid location**s along transportation routes
- Increase capabilities for radiological decontamination at shelters or along transportation routes

10.Increase availability of public information on the real time conditions of critical infrastructures

Parlak, A., J.H. Lambert, T. Guterbock, and J. Clements 2012. Population behavioral scenarios influencing radiological disaster preparedness and planning. Accident Analysis and Prevention. 48: 353–362.

Ranking criteria adapted from: • National Preparedness Guidelines (2007) • National Incident management System (2008) • National Response

Framework (2008)

Technical Approach: Emergency Response (cont.) American Red Cross

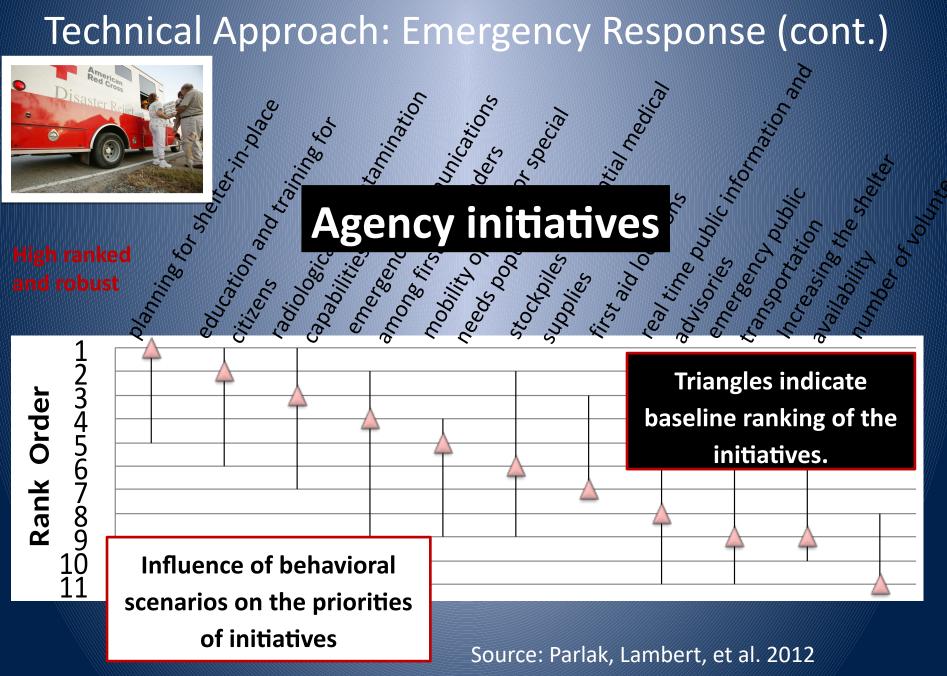
Assessing agency initiatives on the criteria

	Initi	atives
2	Increase emergency public transportation options and capacities	Provide education and training for citizen emergency preparedness Increase austr

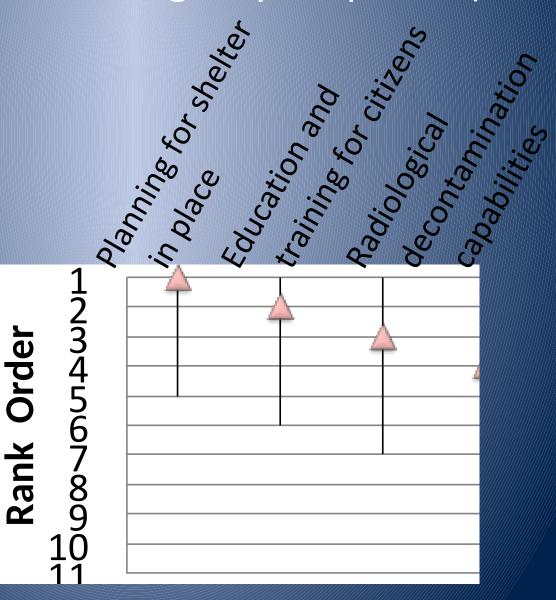
Improve mobility options for disabled and special needs transportation options and Increase emergency public

Increase availability of real time public information and Improve interoperability of emergency communis-among fire.

Criteria						
C.01 Public Health and Safety is addressed by this initiative.		Somewhat Agree	Somewhat Agree	A	sses	smen
C.02 Estimated Cost is addressed by this initiative.	Somewhat Agree		Agree	Somewhat Agree	Agree	
C.03 Information Sharing and Collaboration is addressed by this initiative.			Strongly Agree	Strongly Agree	Strongly A	
C.04 Planning and Public Prenaredness is addressed by				Somewhat		



Saster R


ts

Behavioral assumptions

Importance of the criteria are updated (cont.) Performance criteria	A majority of affected population will lack preparedness and tend to become "walking wounded"	A majority of affected population will have limited access and trust in information sources	A majority of affected population will lack confidence in transportation, energy, communication or other infrastructure
C.01 Public Health and Safety	Increases	-	-
C.02 Estimated Cost	Decreases	-	-
C.03 Information Sharing and Collaboration	Increases	Increases	Increases
C.04 Planning and Public Preparedness	Increases	-	-
C.05 Environmental Considerations	-	-	-


Top three initiatives and the influences of uncertain behaviors on the rankings.

Most influential assumptions are:

S02. Access and trust in information sources

S04. Non-compliance with shelter-in-place orders

Least influential assumption is:

S05. Workplace behaviors of critical workers

Other key results

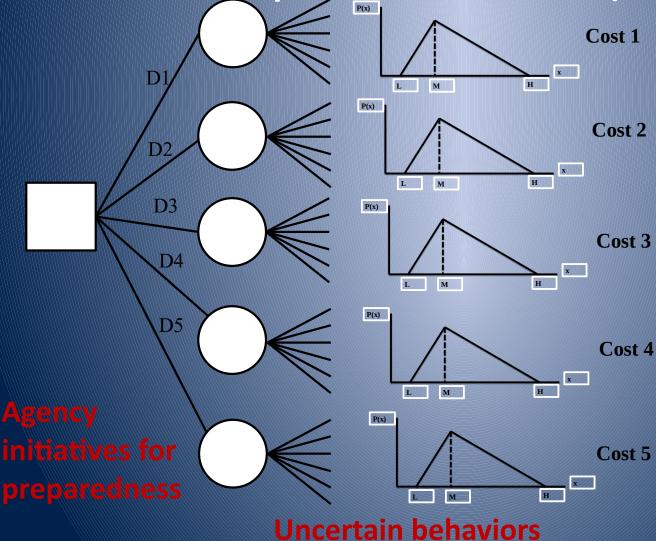
Highest ranked initiatives

Lowest ranked initiative

Provide **education and training** for citizen emergency preparedness

Improve planning that facilitates shelter-in-place

Increase capabilities for **radiological decontamination** at shelters or along transportation routes


Increasing **number of volunteers** to help in case of emergency

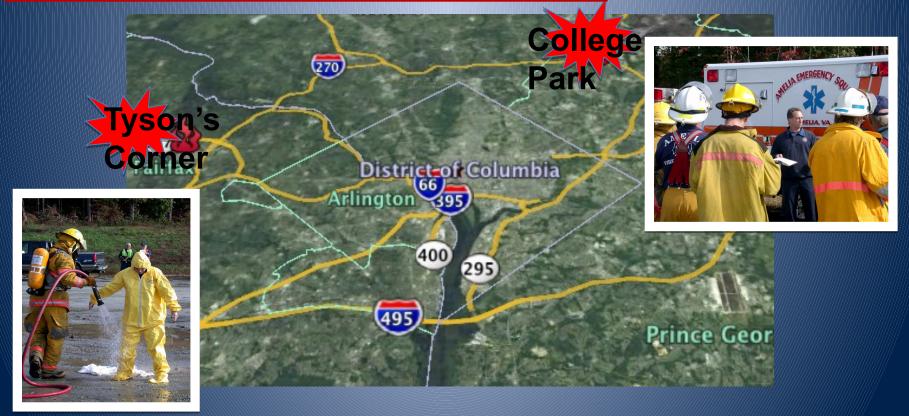
Greatest increase in rank relative to noscenario

Increase availability of **real time public information** and advisories

Greatest decrease in Improve interoperability of emergency communications rank relative to noscenario

Sample of Results (cont.)

Behavioral scenarios critical to community resilience, with impacts to: • Schedule


Performance

Cost

Lessons Learned

Scenario 1a: One bomb in Tyson's Corner, VA Scenario 1b: One bomb in College Park, MD Scenario 2: Multiple bombs across the region

Shelter in place

Lambert, J.H., A.I. Parlak, Q. Zhou, J.S. Miller, M.D. Fontaine, T.M. Guterbock, J.L. Clements, and S.A. Thekdi 2013. Understanding and managing disaster evacuation on a transportation network. *Accident Analysis and Prevention*. 50(1): 645-659.

Lessons Learned (cont.)

Implications of uncertain population behaviors:

- Evacuation and sheltering
- Stockpiling and mobilization of essential supplies
- Planning for traffic and transportation
- Public awareness
- Communication and information sharing capabilities
- Recruitment of staff
- Health and medical care
- Hazardous material preparedness
- Each behavioral assumption had impacts in early, intermediate, and long time horizons of response

Lessons Learned (cont.)

Characterized the needs of the emergency planners in interviews with stakeholders

Found the implications of the origins and intended destinations of residents

Predicted the critical sections of highway across the region

Lessons Learned (cont.)

Assembled agency initiatives, behavioral assumptions and criteria for strategic priority-setting

Identified the most influential behaviors for ranking of agency initiatives

Developed recommendations for risk assessment and management for preparedness of agencies

Further Examples of Compliance and Disruption of Priorities

Radiological & Power Blackout at Olympic Games

Corpo de Bombeiros Militar do Estado do Rio de Janeiro (CBMERJ)

Departamento Nacional de Infra-Estrutura de Transporte (DNIT)

Departamento Geral de Defesa Civil (DGDEC)

Operador Nacional do Sistema Elétrico (ONS)

Exército Brasileiro (EB)

Secretaria de Estado de Ambiente (SEA)

Comissão Nacional de Energia Nuclear (CNEN)

Departamento de Transportes Rodoviários (DETRO)

Marinha do Brasil (MB)

Polícia Civil do Estado do Rio de Janeiro (PCERJ)

Coordenação Regional de Defesa Civil (REDEC)

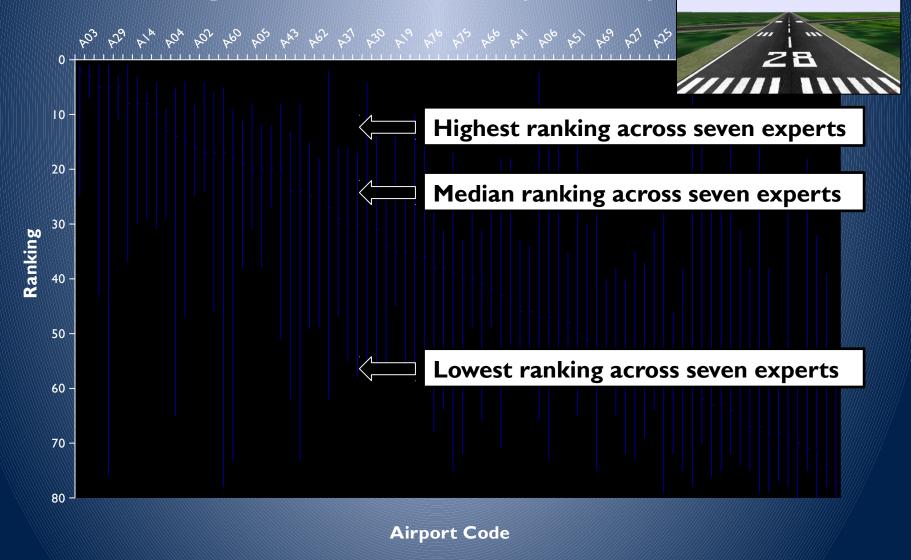
Força Aérea Brasileira (FAB)

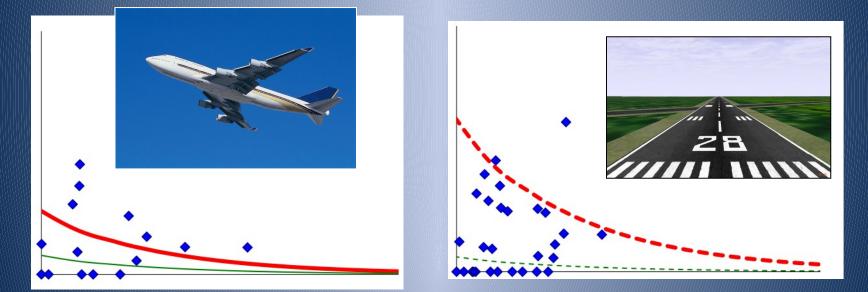
Source: Parlak, Lambert, et al. 2012

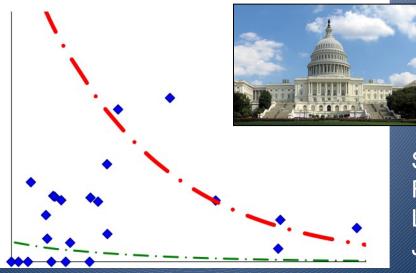
Enterprise Risk of Mobile Broadband for Public Safety

S _s	Scenario	Description
S ₀	Baseline scenario	
S ₁	Funding decreases	Government funding reduced
<i>S</i> ₂	Change of vendor	Contract with current vendor ends or change in contract
S ₃	Environmental event disrupts service	Natural disaster or accident
<i>S</i> ₄	Low enrollment	Agencies across the state choose not to enroll
S ₅	Change in government policy 	Changes to bill creating FirstNet or state level laws restrict rollout, etc.

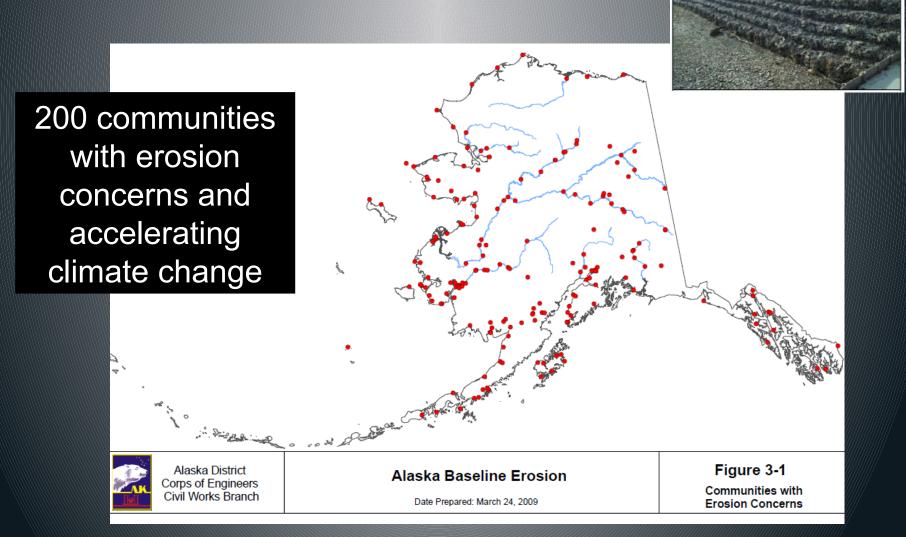
Risk of Runway Incursions


- Scenarios that influence rankings of airports
 - Pilot scenario
 - Owner scenario
 - Regulator scenario


Source: Rogerson and Lambert 2012

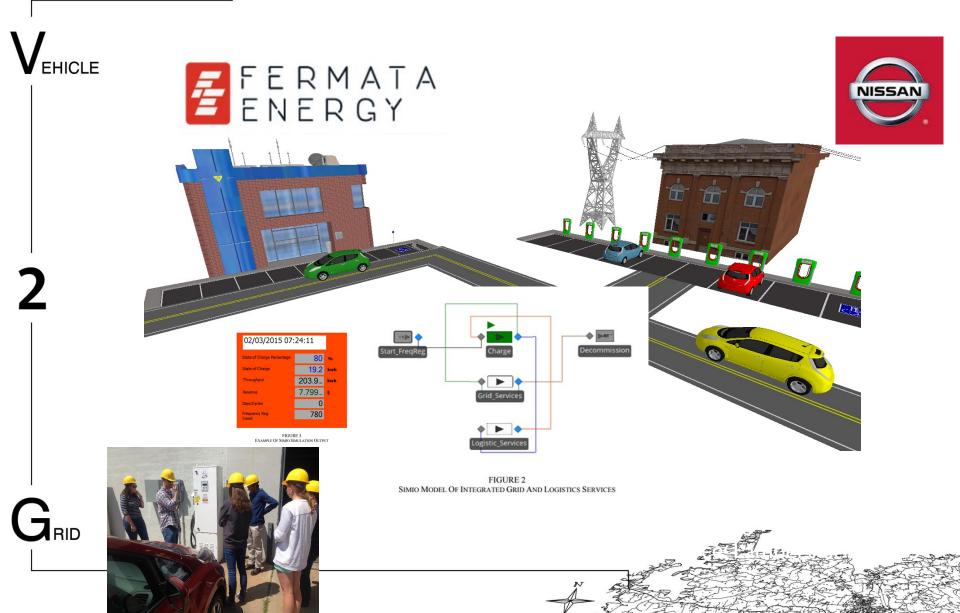

Runway Incursions (cont.)

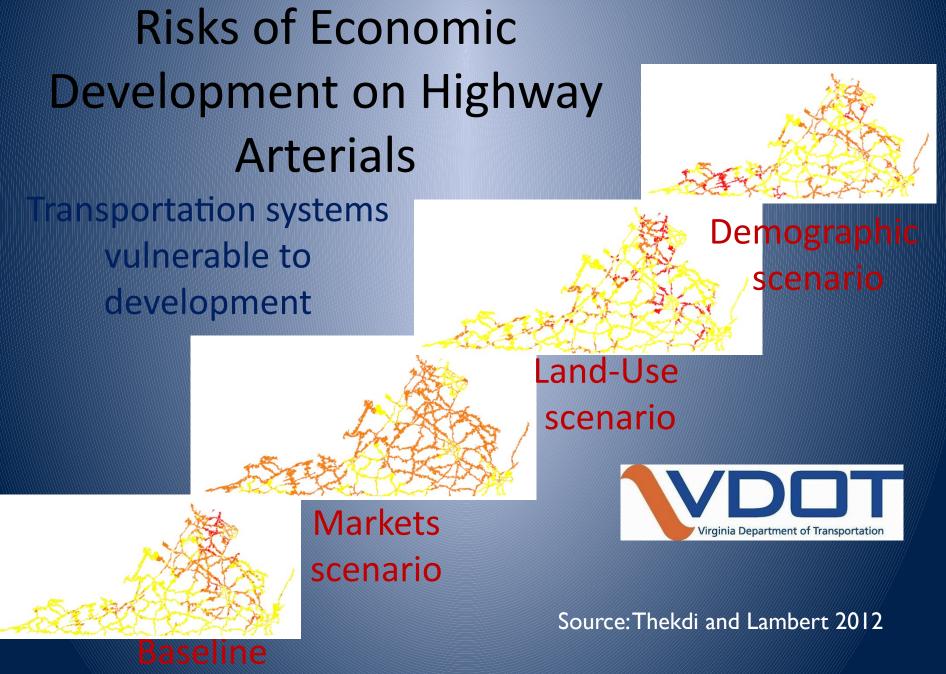
Source: Rogerson and Lambert 2012

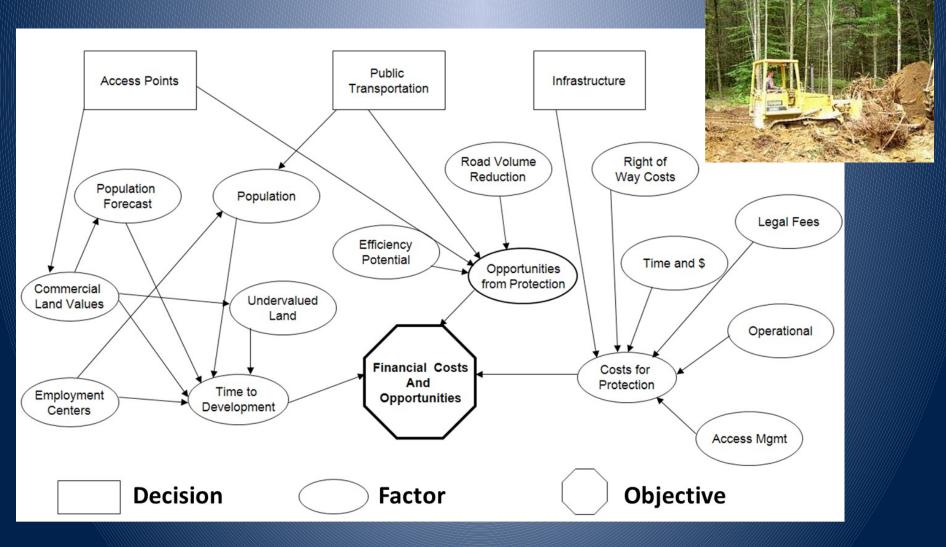

Runway Incursions (cont.)

Source: Rogerson, Lambert, and Johns 2013

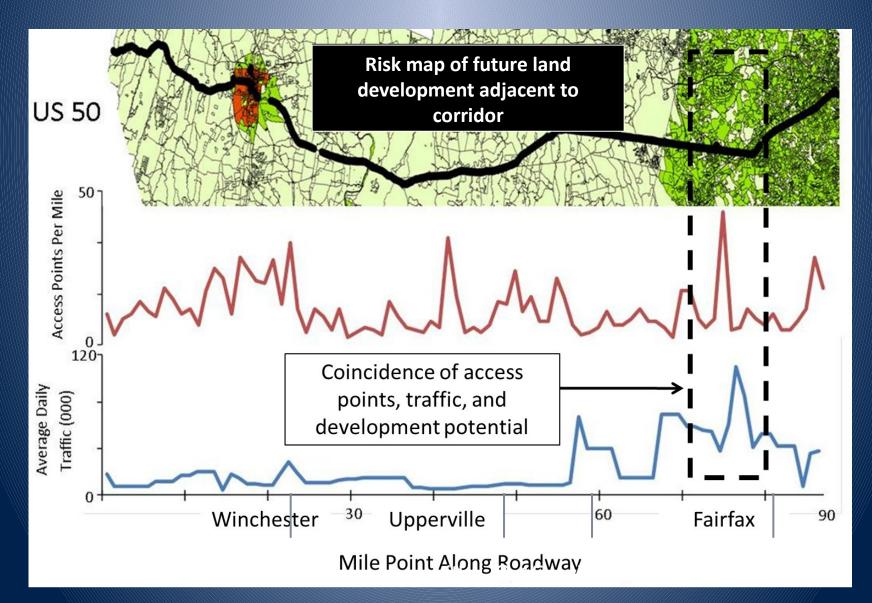
Alaska USA Coastal Erosion

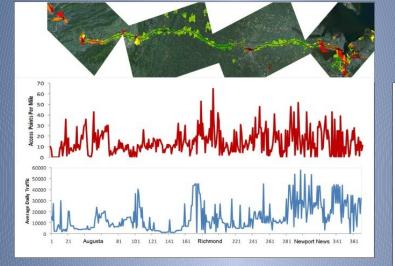


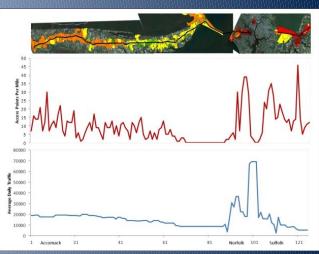

Source: Karvetski, C.W., J.H. **Lambert**, et al. 2011. Climate change scenarios: risk and impact analysis for Alaska coastal infrastructure. *Int. J. Risk Assessment and Management*, 15(2/3): 258–274

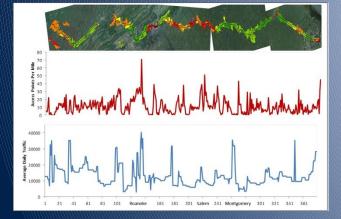

Disruptions of Port WASHINGTON DC cova Guild Lt Duck Head Sh Operations THE PORT OF VIRGI

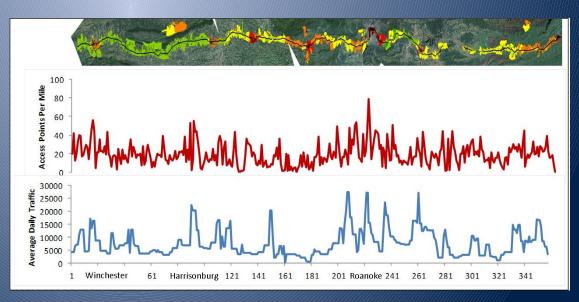
Source: Almutairi, Lambert, et al. 2017 61

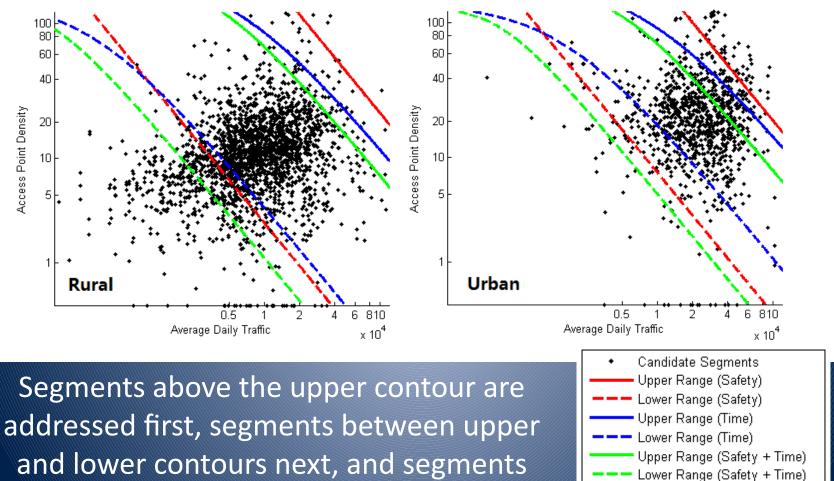


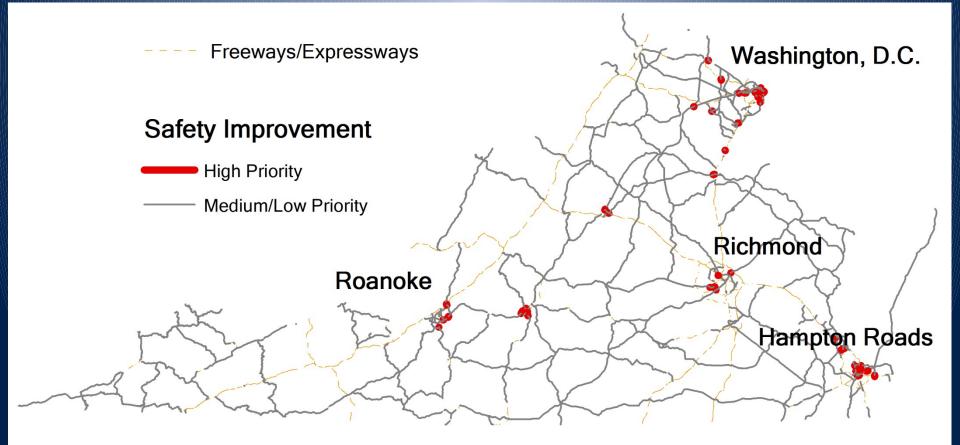


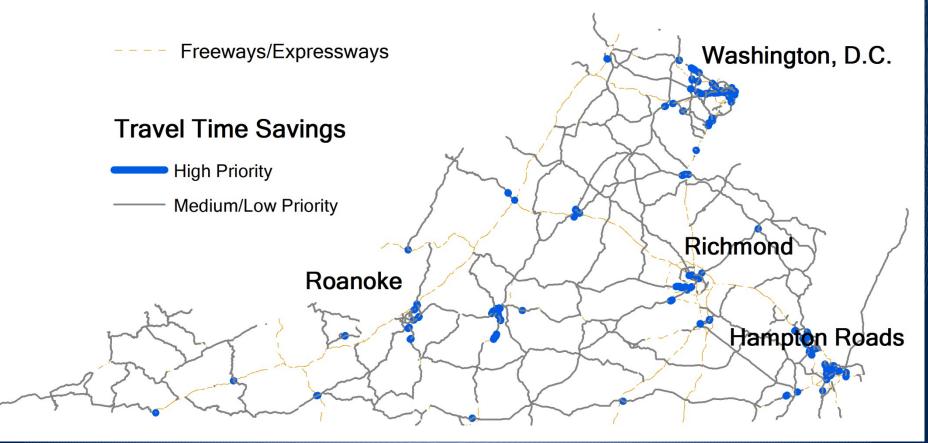


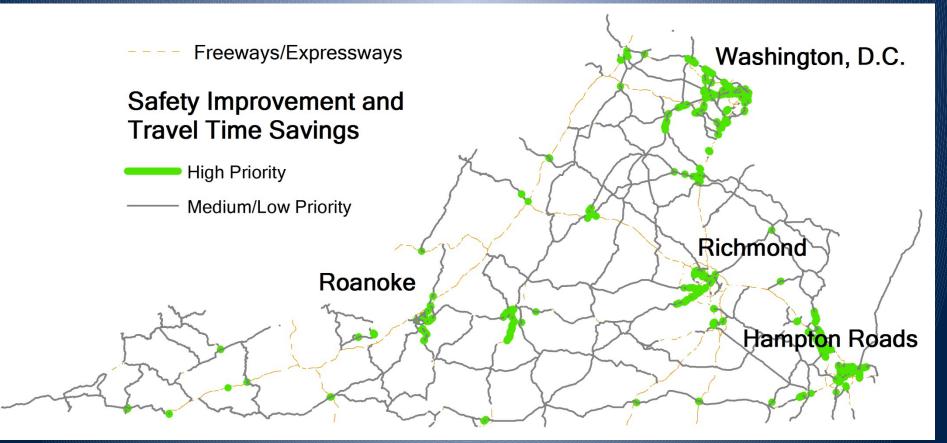


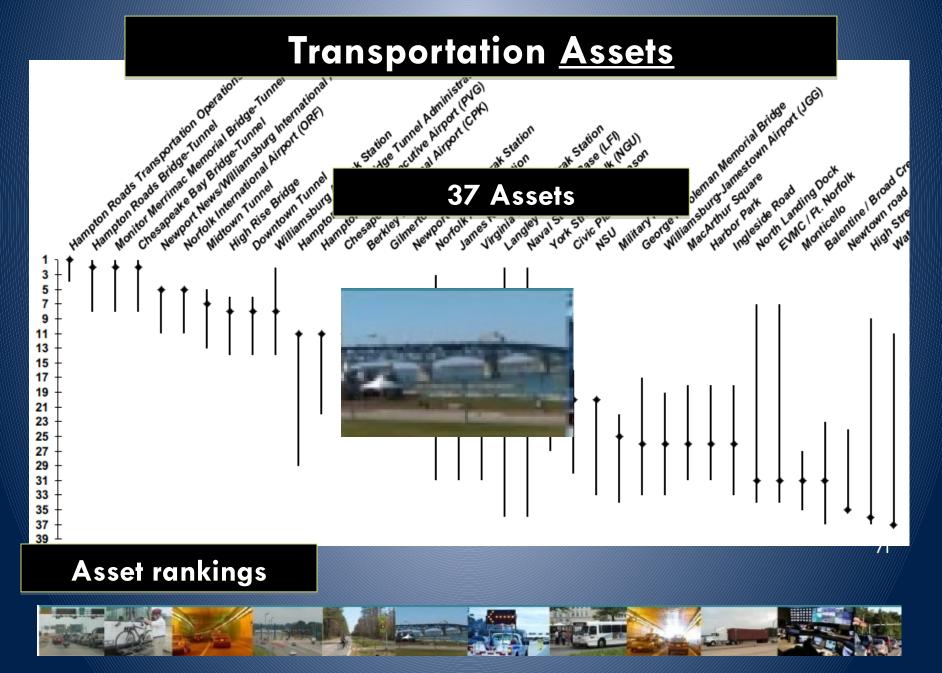

Source: Thekdi and Lambert 2012



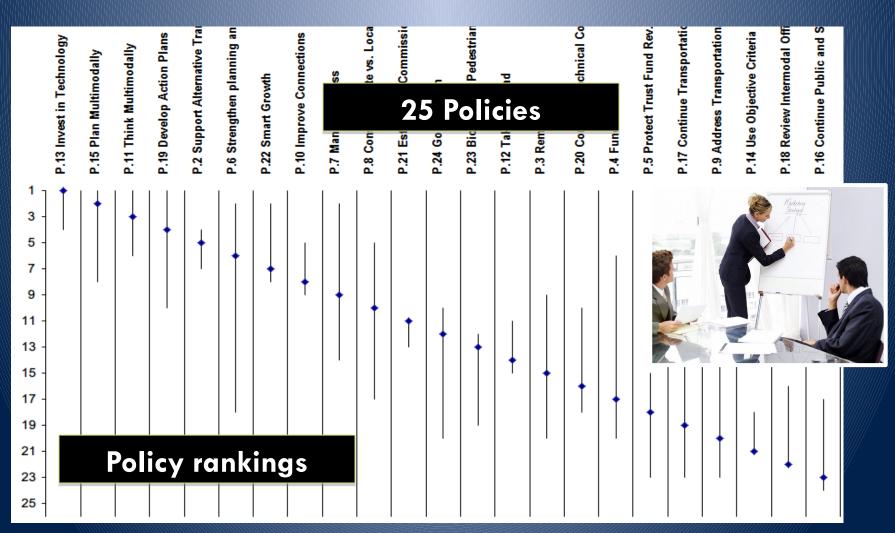


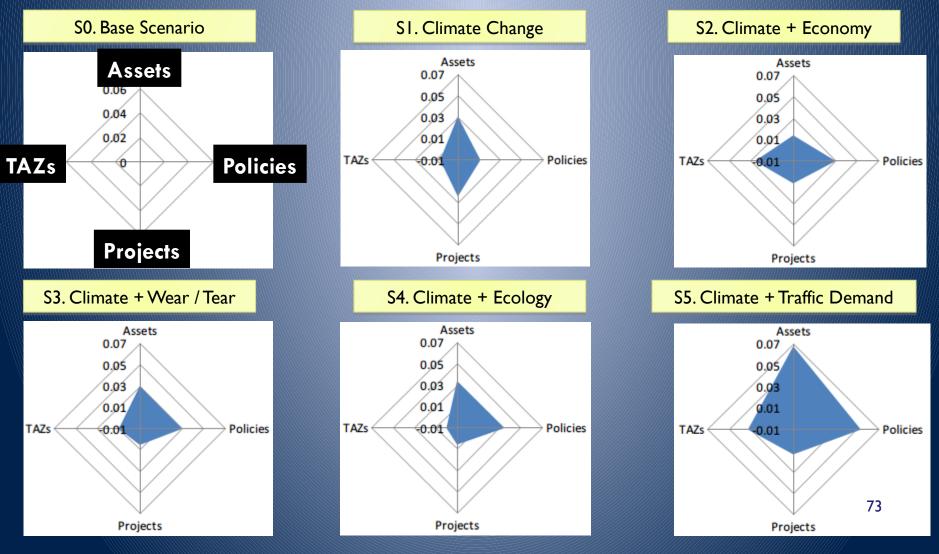




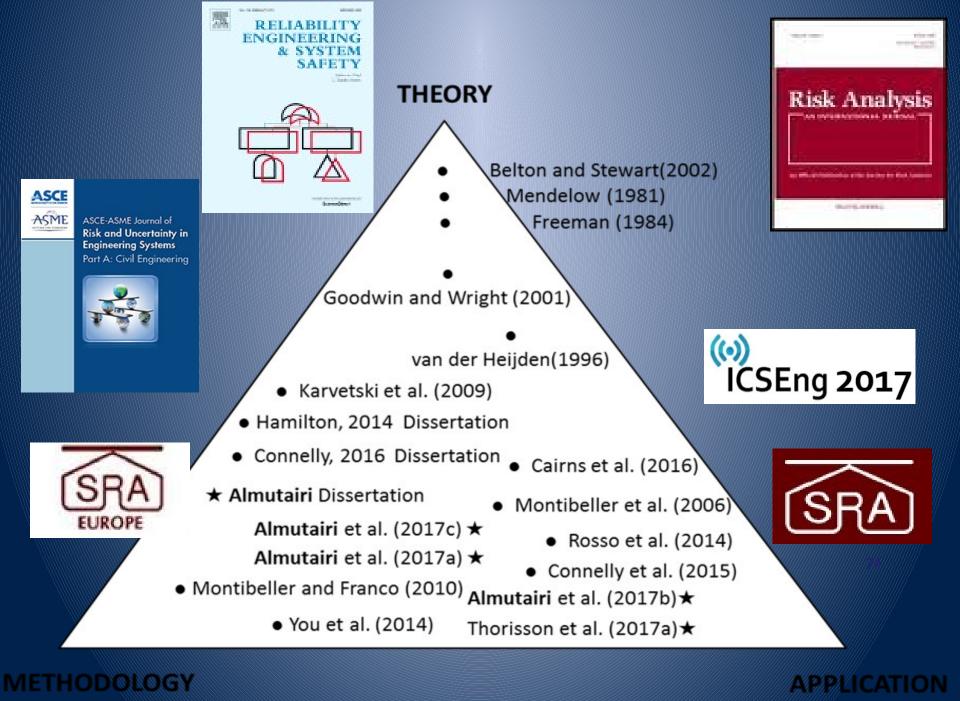


and lower contours next, and segments below the lower contour last.



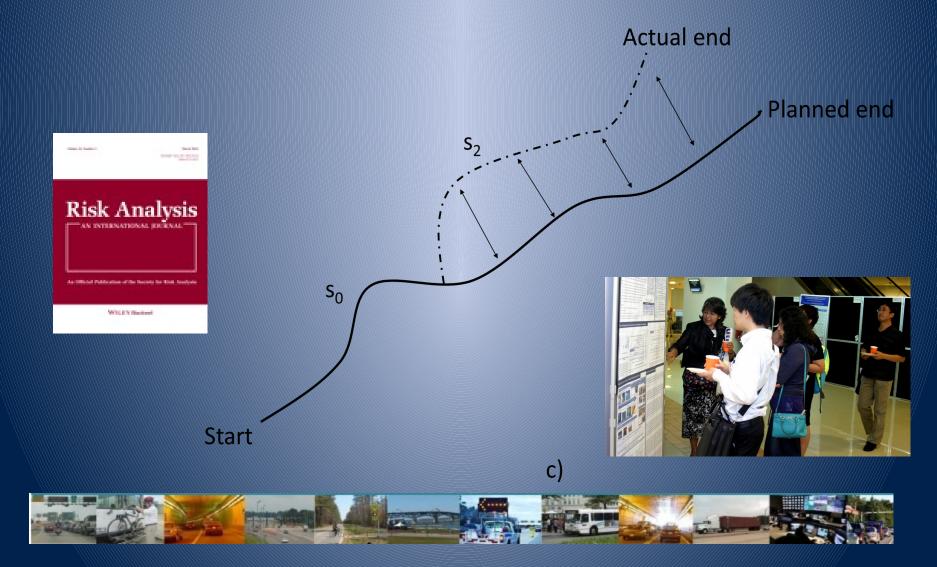

Source: Lambert et al. 2013

Transportation **Policies**



72

Influences of Climate + Other Conditions


Source: Lambert et al. 2013

"N'ira pas loin celui qui sait d'avance où il veut aller." Grand Challenges, Smart Cities, Human and Sociotechnical Systems, Engineering Systems and Environment, Compliance, etc.

Directions (cont.)

Source: Thorisson, Lambert, et al. 2017

CESUN Council of Engineering Systems Universities

BECOME A MEMBER

LEARN MORE

Applied Risk Management Decision Analysis and Risk Dose Response Ecological Risk Assessment Economics and Benefits Analysis Emerging Nanoscale Materials Engineering and Infrastructure **Exposure Assessment** Foundational Issues in Risk Analysis Microbial Risk Analysis Occupational Health and Safety **Risk and Development Risk Communication Risk Policy and Law**

79

(SRA)

Coming to South Africa in 2019 Chair: James H. Lambert, USA Co-Chair: Mary Gulumian, South Africa Program Chair: Igor Linkov, USA Finance Chair: Patricia Nance, USA Local Organizing Chair: Sasa Jovanović, Germany

Cape Town International Convention Centre Cape Town, South Africa May 6-8, 2019

James H. Lambert Lambert **Correction** University of Virginia, USA 151 Engineers Way; Charlottesville, Virginia, USA 22904 +1 434 982 2072

www.people.virginia.edu/~jhlód www.virginia.edu/crmes/energysecurity/ www.virginia.edu/crmes/fhwa_climate

Compliance and Risk Management in the Fourth Revolution

James H. Lambert University of Virginia, USA